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Abstract

Gas, Weed, and Fumes: Three essays in empirical environmental economics

by

Edward A. Rubin

Doctor of Philosophy in Agricultural and Resource Economics

University of California, Berkeley

Professor Maximilian Auffhammer, Chair

This dissertation presents a three-part study in modern empirical environmental
economics. In these three studies, I focus on five core economic issues—equity,
incentives, environmental quality, consumer behavior, and causality—and ask what
environmental economics can teach us about three common topics: energy con-
sumption, cannabis legalization, and pesticide application.

The first chapter examines how residential natural gas consumers respond to
changes in the price of natural gas. With 70 million consumers, residential natu-
ral gas has grown to a first-order policy issue. This first chapter provides the first
causally identified, microdata-based estimates of residential natural-gas demand
elasticities using a panel of 300 million bills in California. To overcome multiple
sources of endogeneity, we employ a two-pronged strategy: we interact (1) a spatial
discontinuity along the service areas of two major natural-gas utilities with (2) an
instrumental-variables strategy using the utilities’ differing rules/behaviors for in-
ternalizing upstream spot-market prices. We then demonstrate substantial seasonal
and income-based heterogeneities underly this elasticity. These heterogeneities
suggest unexplored policies that are potentially efficiency-enhancing and pro-poor.

The second chapter explores what may be unintended—or unconsidered—results
of cannabis legalization. Cannabis legalization advocates often argue that cannabis
legalization offers the potential to reduce the private and social costs related to crim-
inalization and incarceration—particularly for marginalized populations. While this
assertion is theoretically plausible, it boils down to an empirically testable hypothe-
sis that remains untested: does legalizing a previously illegal substance (cannabis)
reduce arrests, citations, and general law-enforcement contact? The second chapter
of this dissertation provides the first causal evidence that cannabis legalization need
not necessarily reduce criminalization—and under the right circumstances, may in
fact increase police incidents/arrests for both cannabis products and non-cannabis
drugs. First, I present a theoretical model of police effort and drug consumption
that demonstrates the importance of substitution and incentives for this hypothesis.
I then empirically show that before legalization, drug-incident trends in Denver,
Colorado matched trends in many other US cities. However, following cannabis
legalization in Colorado, drug incidents spike sharply in Denver, while trends in
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comparison cities (unaffected by Colorado’s legalization) remain stable. This spike
in drug-related police incidents occurs both for cannabis and non-cannabis drugs.
Synthetic-control and difference-in-differences empirical designs corroborate the
size and significance of this empirical observation, estimating that Colorado’s legal-
ization of recreational cannabis nearly doubled police-involved drug incidents in
Denver. This chapter’s results present important lessons for evaluating the effects
and equity of policies ranging legalization to criminal prosecution to policing.

Finally, the third chapter investigates the roles pesticides play in local air quality.
Many policymakers, public-health advocates, and citizen groups question whether
current pesticide regulations properly equate the marginal social costs of pesticide
applications to their marginal social benefits—with particular concern for negative
health effects stemming from pesticide exposure. Additionally, recent research and
policies in public health, epidemiology, and economics emphasize how fine par-
ticulate matter (PM2.5) concentrations harm humans through increased mortality,
morbidity, mental health issues, and a host of socioeconomic outcomes. This chap-
ter presents the first empirical evidence that aerially applied pesticides increase
local PM2.5 concentrations. To causally estimate this effect, I combine the uni-
verse of aerial pesticide applications in the five southern counties of California’s
San Joaquin Valley (1.8M reports) with the U.S. EPA’s PM2.5 monitoring network—
exploiting spatiotemporal variation in aerial pesticide applications and variation
in local wind patterns. I find significant evidence that (upwind) aerial pesticide
applications within 1.5km increase local PM2.5 concentrations. The magnitudes of
the point estimates suggest that the top decile of aerial applications may sufficiently
increase local PM2.5 to warrant concern for human health.

Jointly, the three parts of this dissertation aim to carefully administer causally
minded econometrics, in conjunction with environmental economic theory, to an-
swer unresolved, policy-relevant questions.
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1 | Natural gas price elasticities and
optimal cost recovery under con-
sumer heterogeneity: Evidence
from 300 million natural gas bills

Chapter abstract With 70 million consumers, residential natural gas has grown
to a first-order policy issue. This paper provides the first causally identified,
microdata-based estimates of residential natural-gas demand elasticities using
a panel of 300 million bills in California. To overcome multiple sources of
endogeneity, we employ a two-pronged strategy: we interact (1) a spatial dis-
continuity along the service areas of two major natural-gas utilities with (2) an
instrumental-variables strategy using the utilities’ differing rules/behaviors for
internalizing upstream spot-market prices. We then demonstrate substantial
seasonal and income-based heterogeneities underly this elasticity. These hetero-
geneities suggest unexplored policies that are potentially efficiency-enhancing
and pro-poor.

1.1 Introduction

Coal dominated all other fossil fuels throughout the late 19th and most of the
20th centuries and powered unprecedented economic transformation in the United
States and many other major economies. The recent arrival of a new technology
enabling gas extraction from below the surface, hydraulic fracturing (“frac(k)ing”),
is unearthing ample supplies of low-cost natural gas that will foreseeably fuel the
first half of the 21st century. Fracking received significant exemptions from the
Clean Air Act, the Clean Water Act, and the Safe Drinking Water Act via the Energy
Policy Act of 2005 (Environmental Protection Agency 2013), potentially furthering
the rise of natural gas within energy markets. Natural gas production in the United
States has expanded dramatically, and natural gas prices have fallen considerably,
often residing at half of their pre-2005 levels (Hausman and Kellogg 2015). In 2016,
natural gas surpassed coal as the main source of energy for electricity generation in
the United States and half of US residences used natural gas as their main heating
fuel (U.S. Energy Information Administration 2016b). US residential consumers,
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depending on the severity of the winter, spend 50-80 billion dollars per year on
natural gas (BLS, 2017). The average household spends about as much money on
natural gas as it spends on water (BLS, 2017).

The low price and newly abundant volumes of natural gas, coupled with natural
gas’s status as the cleanest and most efficient fossil fuel (Levine, Carpenter, and
Thapa 2014; National Academy of Sciences 2016), have prompted broad public
and policy support for the use of this fuel both in end uses and in the generation of
electricity.1 Such support partially stems from natural gas’s low carbon content per
BTU, leading some to refer to natural gas as a “bridge fuel,” bridging society toward
a future powered by largely carbon-free sources of renewable energy.

Natural gas is not without critics. The most common criticisms of current natural
gas policy center on environmental degradation, including groundwater contami-
nation, the possible triggering of small earthquakes, increases in air pollution, and
higher incidence of accidents from the large number of trucks servicing fracking
sites (Glanz 2009; Bao and Eaton 2016). More broadly, researchers have critiqued
inefficient and potentially regressive pricing (and regulatory) regimes used in the
consumer-facing side of the industry (Borenstein and Davis 2012; Davis and Mueh-
legger 2010).

Despite its policy relevance, there is a relative dearth of (well) identified esti-
mates for the own-price elasticity of the demand for natural gas.2 Specifically, we
are unable to find any published research that pairs consumer-level data with appro-
priate identification strategies to causally estimate a price elasticity of demand for
natural gas that carries a causal interpretation. Table 1.1 lists the past studies, the
type of data used, and the resulting estimates of the own-price elasticity of demand.
As Table 1.1 shows, past papers either estimate the elasticity of demand for residen-
tial natural gas using aggregated data (e.g., Hausman and Kellogg 2015; Davis and
Muehlegger 2010) or using micro data with average prices (e.g., Alberini, Gans,
and Velez-Lopez 2011; Meier and Rehdanz 2010).3 The majority of these papers do
not attempt to deal with bias resulting from multiple sources of simultaneity, which
we discuss below.

Research on the price elasticity of demand for natural gas faces two major chal-
lenges: insufficient data and multiple potential sources of endogeneity. Many of the
available datasets aggregate households’ consumption across both space and time.
This aggregation—coupled with utilities’ multi-tiered volumetric pricing regimes,

1The fact that an increasingly large share of natural gas is produced in the United States also
wins natural gas considerable political support (Levine, Carpenter, and Thapa 2014).

2Though several previous papers have offered estimates for the price elasticity of demand for
residential natural gas, the existing natural-gas demand elasticity literature addressing these issues
is sparse relative to that of the electricity literature (Rehdanz 2007). A cursory Google Scholar search
returns approximately 148,000 results related to economics, elasticities, and electricity; equivalent
searches for coal and gasoline return approximately 70,000 results each. A similar search for articles
related to natural gas finds fewer than 40,000 results. (The authors performed these searches in
January 2017.)

3The exception is Rehdanz 2007, who uses a two-period sample from West Germany, where it
appears average price equalled marginal price. Rehdanz does not, however, address the endogeneity
of price.
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income-based discounts, and fixed charges—makes it impossible for researchers to
match consumers to the actual prices they face. Aggregation across customers and
seasons also inhibits research into heterogeneity across consumers. Perhaps most
importantly, research on the elasticity of demand for natural gas must also consider
multiple potential sources of endogeneity. The first source of endogeneity is the
classic simultaneity that stems from the fact that quantity and price result from the
equilibrium in a system of equations. Unlike the electricity sector, for natural-gas
customers’ rates change on a monthly basis—updating as a function of gas whole-
sale prices paid by the retail utilities. The second source of endogeneity results
from the fact that price is mechanically a function of quantity in a block-rate price
regime. As a household’s consumption increases, its marginal price increases in dis-
crete steps; consequently, average price also increases with consumption. Thus, a
simple, unidentified regression of quantity on price will result in an incorrect—and
potentially positive—estimate of the price elasticity of demand.

This paper is the first to address these aggregation and endogeneity issues so
as to causally identify the elasticity of demand for residential natural gas. In order
to overcome both the aggregation problem and the endogeneity issues due to in-
creased block rate pricing, the paper uses a dataset of approximately 300 million
residential natural gas bills in California and builds on Ito 2014 to exploit a spa-
tial discontinuity based upon the boundary between the service areas of two large
natural gas utilities.

The paper makes four concrete contributions to the literature on estimating
price elasticities of demand.

First, the natural gas market provides a unique setting with monthly pass-
through of wholesale prices to consumers.4 To overcome potential endogeneity,
we combine a spatial discontinuity with a supply-shifting instrumental variables (IV)
approach. We instrument the utilities’ consumer-facing prices with the weekly av-
erage spot price of natural gas at a major natural gas distribution hub in Louisiana
(the Henry Hub). This instrument is valid, as we know the formula of how utilities
pass-through the price (providing a strong first stage), and the price is determined
prior to within-bill consumption (strengthening the exclusion restriction). Jointly,
the spatial discontinuity and spot-price instrument isolate plausibly exogenous vari-
ation in residential natural gas prices between neighboring households due to the
two utilities’ differential pass-through of spot-market prices—and due to house-
holds’ arbitrarily different billing-period start dates. In other words, as a result of
this two-part empirical strategy, coupled with the rich set of fixed effects that our
dataset allows, the identifying variation in the residential price of natural gas comes
from (1) on which side of a long-established border between utility-owned natural
gas networks the household is located, (2) the subtly different pricing rules and
buying strategies governing the two rate-of-return-earning utilities as they individ-
ually respond to price variation in the natural gas spot market, and (3) on which
day of the month a household’s bill begins.

4Electricity markets generally update cost pass-through with less frequency and with lower vari-
ance.
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Our second contribution builds upon the fact that we observe whether house-
holds are part of a low-income program that provides subsidized natural gas to
households. We use this knowledge to estimate price elasticities by high- versus
low-income households. Third, we observe billing at a roughly monthly frequency
for the households in our sample, allowing us to estimate seasonal elasticities, as
well as price elasticities specific to income-group by season. Finally, due both to
the temporal resolution of the data and to the fact that we observe households
over long periods of time in the same housing structure, we determine whether
households respond to current or lagged prices. This result bears evidence on the
salience of natural gas bills.

We find that on average, the price elasticity of demand for residential natural
gas ranges from −0.23 to −0.17. Importantly, we find evidence of heterogeneity
in this elasticity along the dimensions of season and income. Both lower-income
and higher-income households are essentially inelastic to price in summer months.
However, in winter months, lower-income households are substantially more elas-
tic to price than higher-income households. We discuss unexplored policies with
the potential to increase both efficiency and progressivity in settings where exter-
nalities from natural gas consumption are priced. Finally, we show evidence that
households respond to lagged electricity prices—a result consistent with rational
inattention following from the difficulties households face in finding real-time infor-
mation on natural gas consumption and prices. In addition to motivating previously
unexplored policies with the potential to enhance efficiency and reduce the burden
on the poor, these heterogeneity findings also supply insights into other pooled
elasticity estimates that do not consider underlying heterogeneity.

1.2 Institutional setting

In order to identify a causal estimate of the price elasticity of natural gas demand,
we need to explain the institutional and physical setup of the natural gas industry
in the United States. This market is commonly divided into four segments: (1)
production and processing, (2) transportation, (3) storage, and (4) local distribu-
tion companies (LDCs). Figure 1.1 illustrates the basic institutional organization of
the natural gas industry.5 The four segments we discuss below roughly follow Fig-
ure 1.1 except that they exclude end users (those users who only consume natural
gas) and the liquid natural gas import/export-based segments of the market. While
this paper focuses on the behavior of residential natural gas consumers, part of
our identification strategy relies upon a basic understanding of the wider industry,
specifically in understanding which instruments may shift supply without affecting
demand. After discussing these four segments, we then describe the multi-tier pric-

5We include liquid natural gas (LNG) in the figure for completeness, but liquid natural gas does
not play a large role in the natural gas market in the United States: LNG imports currently account
for less than one percent of natural gas imports and accounted for three percent of imports at their
peak in 2007 (Levine, Carpenter, and Thapa 2014). For this reason, we omit LNG for the rest of this
paper.
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ing structure employed by the two Californian natural gas utilities discussed in this
paper.

1.2.1 Market segments

Production and processing Natural gas enters the market at the wellhead where
it is produced and first sold (Brown and Yücel 1993). Some wells produce only
natural gas, while other wells produce natural gas in addition to crude oil (Levine,
Carpenter, and Thapa 2014). The raw product then moves from wellheads to pro-
cessors. Processors remove impurities and separate the raw product into multiple
commodities (separating “natural gas” from “natural gas liquids”) (Levine, Carpen-
ter, and Thapa 2014).

Transportation High-pressure pipelines transport processed natural gas from pro-
duction and processing areas to both intermediate users (storage facilities, pro-
cessors, LDCs) and final users (electricity generators, industrial users, commercial
users, and residential users). Figure 1.2 maps this pipeline network for the conti-
nental United States. Private companies own and operate segments of the pipeline;
these pipeline companies’ rates are regulated at the state level and the national level
(Levine, Carpenter, and Thapa 2014). Extensive spot markets and futures markets
exist for natural gas. Louisiana’s Henry Hub connects to 13 intrastate and interstate
pipelines. The Henry Hub is the designated delivery point for the New York Mercan-
tile Exchange’s natural gas futures contracts and the Henry Hub price is generally
regarded as a nationally relevant price (Levine, Carpenter, and Thapa 2014). Fig-
ure 1.3 depicts the Henry Hub spot price from 1997 through 2016. Transportation
costs represent a substantial percentage of natural gas prices; according to Levine,
Carpenter, and Thapa, in 2011–2012, 72 percent of consumers’ average heating
costs originated in “transmission and distribution charges”.6 Thus, the natural gas
transportation network creates a nationally integrated market and simultaneously
contributes to a sizable portion of the prices paid by natural gas end users.

Storage Storage plays a major role in several parts of the natural gas market, but
all parties store mainly for the same reason: volatility within the market. Due to
its major roles in heating and electricity production, natural gas demand is strongly
driven by weather and can be unpredictable in the short run. To combat price
volatility and to be able to meet peak demand, both local distribution companies
and large natural gas consumers store gas underground (Levine, Carpenter, and
Thapa 2014). Producers utilize storage to smooth production.

Local distribution companies Local distribution companies’ primary function is
distributing natural gas to their contracted end users—industrial, residential, and

6Levine, Carpenter, and Thapa also note that in 2007–2008 “transmission and distribution
charges” accounted for 41 percent of consumers’ average heating costs. It is worth keeping in
mind that consumers’ average heating costs fell approximately 20 percent in this period.

5



www.manaraa.com

commercial consumers of natural gas. To accomplish this task, LDCs purchase nat-
ural gas through both spot markets and longer-term contracts. In addition, LDCs
own and operate their own pipeline and storage networks. To cover the fixed costs
involved in their pipelines, storage, and administration, LDCs often utilize a combi-
nation of two-part tariffs and multi-tiered pricing regimes—though some utilities
fold all of their costs into their volumetric pricing. State utility commissions (e.g.,
the California Public Utilities Commission) regulate LDCs’ price regimes, allowing
the LDCs to earn a regulated rate of return (Brown and Yücel 1993; Davis and
Muehlegger 2010; Levine, Carpenter, and Thapa 2014).

1.2.2 Natural gas pricing in California

The California Public Utilities Commission (CPUC) regulates both of the utilities
from which we draw data in this paper: Pacific Gas and Electric Company (PG&E)
and Southern California Gas Company (SoCalGas). Because this paper analyzes
residential natural gas consumers’ responses to natural-gas retail prices, the most
relevant regulations facing PG&E and SoCalGas are CPUC’s price and quantity reg-
ulations. In addition, the California Energy Commission (CEC) defines geographic
climate zones (see Figure A.1), which, in part, determine households’ price sched-
ules (California Energy Commission 2015, 2017).

For PG&E’s and SoCalGas’s residential consumers, a household’s bill depends
upon five elements:7

1. The two-tiered price schedule set by the utility
2. The total volume of natural gas consumed during the billing period
3. The season (summer or winter) in which the bill occurs
4. The climate zone into which the household’s physical location falls
5. The household’s CARE (California Alternate Rates for Energy) status8

Figure A.2 provides an example of a typical residential natural gas bill from PG&E.
Both PG&E and SoCalGas utilize two-tiered pricing regimes. The California

Energy Commission divides California into 16 climate zones in which households’
needs for heating should be relatively homogeneous (California Energy Commission
2015, 2017; Pacific Gas and Electric Company 2016). The utilities also divide
the year into heating (winter) and non-heating (summer) seasons. Based upon a
household’s climate zone (determined by the household’s location) and the season,

7Consumers’ billing periods do not perfectly align with calendar months. However, PG&E’s and
SoCalGas’s price changes do align with calendar months (during the years that our data cover).
The two utilities deal with this misalignment of billing periods and price regimes slightly differently.
PG&E calculates individual bills for each calendar month under the assumption that consumption
is constant throughout the billing period. SoCalGas calculates a single bill using time-weighted
average prices (averaging across the different price regimes). These methods are equivalent under
a single linear price but differ under the actual multi-tiered price regimes. Please see the Calculating
bills section in the appendix for more detail.

8The previously mentioned program that provides subsidized energy rates to low-income house-
holds in California.
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the CPUC determines a volume of natural gas that should be adequate for heating
during the course of one day. This volume of natural gas is called the household’s
daily allowance. Multiplying the household’s daily allowance by the number of days
in the billing period gives the household’s total allowance for the bill. For each unit
(therm9) of natural gas up to the bill’s total allowance, the household pays the first
tier’s per-unit price (baseline price). For each unit of gas above the household’s
total allowance, the household pays the second tier’s per-unit price (excess price).
Figure 1.4a illustrates an example of the two-tier block-pricing regime used by
PG&E and SoCalGas. Figure 1.4b depicts how residential consumers’ (daily) tier-
one allowances vary through time within a given climate zone (PG&E’s climate
zone R and SoCalGas’s climate zone 1). Figure A.1 depicts California’s 16 California
Energy Commission (CEC) defined climate zones.

Each month, the utilities update their price schedules. The absolute difference
between the first-tier price and the second-tier price also varies but tends to remain
constant for several months.10 These monthly price changes allow the utilities to
charge customers at rates that reflect the prevailing price of natural gas. In fact,
the utilities tie their price updates to their costs—thus linking residential rates to
spot market prices.11 If the utilities wish to change the way in which their prices
are tied to market prices and other costs, they must receive authorization following
a review process with CPUC. Figure 1.6a illustrates these monthly price-regime
changes and the fairly fixed step between the two tiers. Figure 1.6b depicts the
correlation between the utilities’ baseline (first-tier) prices and the spot market
price of natural gas at the Henry Hub.

A household’s participation in the CARE (California Alternate Rates for Energy)
program also affects the prices that the household faces. Households qualify for
CARE by either meeting low-income qualifications or receiving benefits from one of
several state or federal assistance programs (e.g., Medi-Cal or the National School
Lunch Program) (Southern California Gas Company 2016). CARE prices are 80
percent of standard prices at both tiers. In addition to giving us the household’s
correct pricing regime, we use CARE status to identify low-income households.

1.3 Data

1.3.1 Natural gas billing data

The billing data in this paper come from two major utilities in California: Pacific Gas
and Electric Company (PG&E) and Southern California Gas Company (SoCalGas).
The PG&E data cover residential natural gas bills in PG&E’s territory from January
2003 through December 2014. The SoCalGas data cover residential natural gas bills

9The utilities in this paper work in units of volume called therms. One therm is equal to 100,000
Btu (U.S. Energy Information Administration 2016c).

10The utilities differ in the frequencies at which which they change this absolute difference: PG&E
adjusts the distance between the two tiers’ price much more frequently than SoCalGas.

11The utilities report their weighted average costs of gas to the CPUC.
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from May 2010 through September 2015. Thus, the two utilities’ data overlap from
May 2010 through December 2014. After excluding zip codes with fewer than 50
households, PG&E’s service area covers 597 5-digit zip codes (680,846 9-digit zip
codes) with a total of 5,888,276 households and 180,663,705 bills. After excluding
zip codes with fewer than 50 households, SoCalGas’s service area covers 611 5-
digit zip codes (610,207 9-digit zip codes) with a total of 2,526,503 households
and 95,335,393 bills. The left side of Figure 1.5 depicts PG&E’s and SoCalGas’s
service areas at the 5-digit zip code level. Table 1.2 provides a brief summary of
the billing data with regard to the numbers of bills, households, zip codes, and
monetary values of the bills. Tables 1.2 and 1.3 summarize prices, quantities, and
other variables of interest—pooling across all observations and also splitting the
data by season or CARE status. Both tables summarize the full dataset—all zip
codes across both utilities–and a subset of the data based upon all 5-digit zip codes
served by both utilities. We describe this subset in detail below in the Empirical
strategy section.

The utilities’ billing data are at the household-bill level: a single row of the
dataset represents a single billing period for a given household. Table A.17 de-
scribes the variables (columns) in this dataset. We follow the natural gas utilities’
convention in defining a household (or customer) as the interaction between a
unique utility account and a unique physical location identifier.

We also utilize historical data on pricing from the two utilities. As described
above, these pricing data include (1) each utility’s monthly two-tier pricing regime
and (2) the daily allowance for each climate zone during each season. After joining
these pricing data to the households’ billing data, we are able to determine both the
marginal price and average price (and average marginal price) for each bill received
by each household. We forgo analyses below the five-digit zip code because (1)
many households are missing their full 9-digit zip codes (the plus-four codes are
missing), (2) many of the 9-digit zip codes do not match into ZIP4 databases, and
(3) our identification strategy already utilizes within-zip-code variation (discussed
in detail below).

1.3.2 Weather data

Data on daily weather observations originate from the PRISM project at Oregon
State University (PRISM Climate Group 2004). We match this local, daily weather
data to the household consumption data at the day by 5-digit-zip-code level. The
PRISM dataset contains daily gridded maximum and minimum temperature for
the continental United States at a grid cell resolution of roughly 2.5 miles (4 km).
Figure A.3 maps a single day of average temperature from the PRISM data for the
continental United States. We observe these daily data for California from 1980–
2015. In order to match the weather grids to zip codes, we obtained a GIS layer of
zip codes from ESRI (Esri 2017), which is based on US Postal Service delivery routes
for 2013. For small zip codes not identified by the shape file, we purchased the
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location of these zip codes from a private vendor12. We matched the PRISM grids
to the zip code shapes and averaged the daily temperature data across multiple
grids within each zip code for each day. For zip codes identified as a point, we
use the daily weather observation in the grid at that point. This exercise results
in a complete daily record of minimum and maximum temperatures—as well as
precipitation—at the zip-code level from 1980–2015.

1.4 Empirical strategy

In this section we describe the empirical strategy that we use to identify the price
elasticity of demand for residential natural gas consumers. First, we present the
basic estimating equation that motivates the paper’s results. Next, we discuss
the inherent challenges to identification in this setting. We then discuss potential
solutions to these challenges and detail which of these solutions are feasible in this
paper’s specific setting. Finally, before moving to the results, we provide evidence
for the validity of the instruments.

1.4.1 Estimating equation

The relationship at the heart of this paper’s elasticity estimates is

log(qi,t) = η log(pi,t) + λi,t + εi,t (1.1)

where i and t index household and time; q denotes quantity demanded; and p de-
notes price. Rather than choosing a specific type of price, we present results for five
variants of price. These five types of price include the price that classical economic
theory deems relevant—the marginal price—in addition to average price, average
marginal price, baseline (first-tier) price, and simulated marginal price (defined
and discussed below).13 In the results section, we also discuss which lag of price is
most salient to consumers (see Figure 1.7 for an example and a brief discussion of
price lags). The term λi,t represents household fixed effects, time-based fixed effects,
and/or household-by-time fixed effects—depending on the specification. Our main
specification in this paper uses household fixed effects and city by month-of-sample
fixed effects (e.g., Fresno in January 2010; also called city by year by month). A
causally identified estimate of η yields the own-price elasticity of demand.

1.4.2 Challenges to identification

Two main sources of endogeneity threaten identification in equation 1.1.
The first challenge in identifying this own-price elasticity of demand is the

potential endogeneity that results from the simultaneous determination of price
12zip-codes.com
13We define average marginal price as the quantity-weighted marginal price paid by a customer

during her billing period. Average marginal price does not include fixed charges, while average price
does.
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and quantity that results from the equilibrium of supply and demand—simultaneity
(e.g., Woolridge 2009). In the presence of simultaneity, standard ordinary least
squares (OLS) fails to properly treat the endogeneity inherent in (1.1). As discussed
above, many papers in the natural gas literature ignore this potential source of
bias while estimating the price elasticity of demand—relying upon fixed effects,
uncorrelated demand and supply shocks, and/or assumptions of exogenous prices.
If simultaneity is indeed present in this setting, then the estimates in these papers
will recover biased estimates for the elasticity of demand for residential natural gas.

A second challenge to identification in this paper results from our paper’s specific
context: the two-tiered price schedule within California’s natural gas market. Put
simply, in tiered pricing regimes, the marginal price is a (weakly increasing, mono-
tonic) function of quantity. For the same reason, average price is also a function of
quantity. Thus, when a household consumes more, its marginal and average prices
mechanically increase. In terms of identifying the price elasticity of demand, this is
bad variation: the marginal price that a household faces is endogenous because the
marginal price is correlated with unobserved demand shocks (Ito 2014). This bias
is a specific form of simultaneity often called reverse causality.

In practice, one generally cannot sign the bias resulting from the classical simul-
taneity of price and quantity without making further assumptions regarding the
correlation of supply and demand shocks. On the other hand, the bias resulting
from marginal and average prices being a function of quantity results in upwardly
biased estimates of demand elasticities. In extreme cases, this latter case of bias can
yield estimates that suggest upward-sloping demand curves.

Table 1.5 demonstrates the consequences of failing to address these challenges
to identification by estimating the price elasticity of demand—η in equation 1.1 via
ordinary least squares (OLS) using marginal price (columns 1–3) and baseline (first-
tier) price (columns 4–6). We also vary the set of controls for each price. For a given
price, the leftmost columns apply the simplest set of controls. The “identification
strategy” presented in Table 1.5 makes no attempt to correct for the aforementioned
potential biases outside of a fairly rich set of fixed effects—household fixed effects
and city by month-of-sample fixed effects. Each regression controls for within-bill
heating degree days (HDDs) during the billing period.14 The leftmost column for
each price uses a five percent sample of all bills from PG&E and SoCalGas (sampled
at the five-digit zip code). The remaining columns (columns 2, 3, 4, and 5) use a
border-discontinuity motivated sample in which we keep all zip codes where the zip
code receives natural gas from both PG&E and SoCalGas (discussed in detail below;
also see Figure 1.5). The leftmost and center columns for each price control for
household fixed effects and month-of-sample fixed effects. The rightmost columns
for each price control for city by month-of-sample fixed effects (e.g., Fresno in
January 2010).

The six regressions in Table 1.5 employ two different measures of price: (1) the

14The number of heating degrees in a day is equal to the difference between the day’s average
temperature and 65. Days with average temperatures above 65◦F receive zero heating degrees.
More formally, we calculate the number of heating degrees for day t with mean temperature T̄t (in
◦F) as HDDt = 1

{
T̄t < 65

}
×

(
65 − T̄t

)
. The HDDs variable above is thus HDDS =

∑
t HDDt/1000.
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household’s marginal price during the relevant billing period, and (2) the house-
hold’s baseline (first-tier) price during the relevant billing period. These two—
rather related15—measures of price yield considerably different results, differing
both quantitatively and qualitatively. The baseline price suggests an elasticity be-
tween −0.10 to 0.02, while the marginal price indicates a positive demand elasticity
between 0.43 and 0.47. The substantial differences across estimates in Table 1.5
suggest at least one of the aforementioned biases are present. Specifically, the fact
that the marginal-price based elasticity estimates are positive (implying upward-
sloping demand curves), while the baseline-price based estimates are negative,
suggests that the price-is-a-function-of-quantity flavor of simultaneity is a first-order
problem in this context. This interpretation follows from the results due to the
fact that baseline prices are not a function of quantity, while marginal prices are a
function of quantity.

While the baseline-price based elasticity estimates appear to be reasonable in
terms of magnitude, they are still not identified, as they still may suffer from si-
multaneity bias. Simply adding more observations in the flavor of the big data
movement does not address this potential endogeneity: column 4 of Table 1.5 does
not appear any more plausible than columns 5 or 6, despite adding more than 7
million observations—the same can be said for column 1 vs. columns 2 and 3. In
addition, the fact that the baseline-price based estimates change sign and magni-
tude when we move from the 5% CA sample (column 4) to the border-discontinuity
motivated sample (columns 5 and 6) provides some evidence that classical simul-
taneity may be present. In this border-discontinuity motivated sample, within-zip
code price variation comes from utilities’ differentially pricing natural gas over a set
of potentially comparable households. However, whether the change in coefficients
is due to removing endogenous variation or due to changes in the sample, the exis-
tence of simultaneity is fundamentally a statistically untestable issue which stems
from the theoretical setup of how market prices originate. Rather than assuming
that the sample and/or fixed effects remedy the problem, we instead present a
multipart empirical strategy to directly resolve the challenge.

Finally, it is worth noting that the baseline-price based elasticity estimates are
well within the range of estimates from the existing literature, as shown in Table 1.1.
This outcome warrants some concern, as it suggests that some of these estimates
may suffer from endogeneity.

1.4.3 Solutions for identification

Having shown that OLS with fixed effects and extensive data does not cleanly
identify the own-price elasticity of demand in this setting, we now discuss several
potential routes for identifying the causal effect of price on quantity in our setting.
In the end, we opt for an identification strategy that interacts a spatial discontinuity
with an instrumental variables approach.

15The correlation between marginal price and baseline price is approximately 0.79; see Table A.1
for bivariate correlations of prices measures.
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Discontinuities

A common route toward identification in applied microeconomics involves finding
relatively small geographic units that receive different prices within the same time
period. The assumption is that observable and unobservable characteristics and,
more importantly, households’ price responsiveness do not differ across the border,
yet they are exposed to different prices changes allowing for econometric identifica-
tion. Arbitrary administrative boundaries that determine policies’ catchment areas
provide a popular tool in this context, e.g., Dell 2010; Chen et al. 2013; Ito 2014. In
our context of natural gas in California, the boundary between PG&E and SoCalGas
offers potentially arbitrary within-city (and within-zip code) variation in prices dur-
ing a month. Specifically, the boundary between PG&E’s and SoCalGas’s natural gas
service areas bisects eleven cities—in three clusters—in southern California: Arvin,
Bakersfield, Fellows, Fresno, Del Ray, Fowler, Paso Robles, Selma, Taft, Tehachapi,
and Templeton. The left panel of Figure 1.5 displays the two utilities’ service areas
throughout California (for zip codes sufficiently covered in the datasets). The right
panel of Figure 1.5 zooms in on the eleven cities (39 zip codes) that PG&E and
SoCalGas both serve. Within these eleven cities, PG&E serves all 39 zip codes, while
SoCalGas serves 18 of the zip codes.

This identification strategy rests upon the assumption that households on one
side of the utilities’ border provide a valid control group for households on the
other side of the border. Because the boundary mainly represents the extent of each
utilities’ underground distribution network and is unlikely to enter into households’
preferences, the exogeneity of the boundary to household characteristics should
be valid (Ito 2014). The main threat to this identification strategy is that utilities’
networks correlate with geographic or neighborhood characteristics over which
individuals have preferences. However, we use household fixed effects, which
absorb mean differences across households. Thus, for the border discontinuity to be
invalid, households would have to sort in a way consistent with their elasticities, and
the utilities’ price series would have to differ significantly in their variances. Because
the data contain considerable variation in prices for both utilities and the panel
contains approximately six years of monthly bills, this sort of sorting bias seems
unlikely. Figure 1.6b suggests the generating distributions for the utilities’ prices
are quite similar (the standard deviations of the price series are 0.0940 and 0.1053
for PG&E and SoCalGas, respectively). In addition, Table 1.4 provides some limited
evidence16 of balance across the utility border, comparing PG&E and SoCalGas
households within season (summer or winter) and within income group. Within a
season-income group, the utilities’ customers appear to consume similar volumes of
natural gas, receive similar numbers of days per bill, receive similar allowances on
the first tier, and face similar numbers of heating degree days. SoCalGas customers
tend to receive slightly lower bills, but the difference is less than half of one standard
deviation of total bill amount.

Ito 2014 employs a similar strategy within the context of electricity consump-
tion. However, there is at least one significant difference between the electricity

16Our data on households is restricted to information from natural gas bills.
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and natural gas contexts which prevents us from entirely adopting Ito’s identifica-
tion strategy: discontinuities within electricity utilities’ seven-tier pricing regime.
By law, the electricity utilities in Ito’s study are not allowed to move the price of
the first two tiers—they must recover changes in their costs by moving tiers three
through seven. In addition, electricity utilities in California do not generally change
consumer’s prices each month—and prices do not change across all utilities at the
same time. Thus, marginal prices in Ito’s setting move differently depending upon
a household’s tier and utility. Ito argues that the residual variation—combining
the spatial discontinuity with this pricing discontinuity and spatiotemporal fixed
effects—is plausibly exogenous from demand shocks. Because natural gas (in Cali-
fornia) has only two tiers and because the absolute difference between the two tiers
has relatively low variation, we are unable to take advantage of price-tier based
discontinuities. Therefore, in addition to this utility-border-based discontinuity, we
adopt an additional strategy to overcome endogeneity.

Instrumental variables

The second element in our empirical strategy for identifying the price elasticity of de-
mand for natural gas involves a traditional solution to simultaneity: supply-shifting
instruments. In this context, the ideal supply-shifting instrument is (1) strongly
correlated with the prices that the natural gas utilities charge their customers (the
first stage), and (2) uncorrelated with residual shocks affecting consumers’ demand
(Angrist and Pischke 2009). In this paper, our instrument is the Henry Hub spot
price for natural gas.

Henry Hub spot price Specifically, we instrument the prices that consumers face
(e.g., marginal price, average price, baseline price) with the average spot price
at Louisiana’s Henry Hub in the week preceding the change in prices. We also
interact the Henry Hub spot price with utility to allow the utilities to differentially
pass through price changes. The Henry Hub spot price represents the nationally
prevailing price for short-term natural gas contracts (the hub sits at the intersection
of 13 intrastate and interstate pipelines) (U.S. Energy Information Administration
2016a). This instrument mechanically satisfies the requirement of having a strong
first stage, as both utilities base their prices, in part, on market prices for natural gas
in the period preceding their rate changes—the utilities buy natural gas on the spot
market, and the California Public Utilities Commission regulates how the utilities
fold their costs into the price regimes that customers face on a monthly basis.

The exclusion restriction for this spot-price based instrument is less obvious, but
several factors suggest the exclusion restriction is plausibly valid. First, California’s
entire residential natural gas demand represents at most three percent of national
natural gas consumption—limiting the individual utilities’ ability to set/influence
spot prices and the Henry Hub. Second, we interact the spot price instrument
with utility. This interaction, conditional on city by month-of-sample fixed effects,
implies that the identifying variation in our instruments comes from the difference
in how the two utilities’ incorporate monthly spot-price shocks into their pricing
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regimes. Third, because the utilities must obtain approval for price changes before
the new price regime begins, the spot price is temporally disconnected from the
billing period. In other word, the utilities’ costs (and approved prices) are based
upon spot prices that precede the billing period by several weeks. Thus, shocks that
affect the Henry Hub spot price are distinct in time from shocks that affect natural
gas demand—our fixed effects will absorb any of these shocks, so long as they do
not differ across the utilities’ border within a month.

In addition, we show that the most salient lag of price is likely the second lag of
price, further disconnecting contemporaneous local demand shocks from market-
level supply shocks two months prior.17 We also control for the number of heating
degree days (HDDs) in the household’s zip code during the households’ billing
period. Because residential consumers primarily use natural gas in heating applica-
tions, controlling for HDDs further reduces the opportunity for local demand shock
to affect national prices. One final exclusion-restriction concern is that price varia-
tion in the spot market for natural gas may affect both residential natural-gas prices
and residential electricity prices. In this scenario, we would not be able to separate
the effect of an electricity price shock from a natural-gas price shock. However,
Figure 1.8 suggests that (1) residential natural gas and electricity prices are uncor-
related in both levels and differences (across the utilities’ border within a month
of sample), and (2) variation in the residential price for electricity is uncorrelated
with variation in the Henry Hub spot price of natural gas.18 Therefore, we argue
that the exclusion restriction is plausibly valid for our spot-price instrument.

Our identification strategy thus interacts the spatial discontinuity between PG&E’s
and SoCalGas’s service areas with the Henry Hub spot price. Specifically, the iden-
tifying variation stems from the two utilities’ divergent pass-through of the spot
market price—differentially projecting variation in the the natural gas spot market
across a tenably arbitrary border between the two utilities.

By employing a two-part identification strategy that interacts a spatial disconti-
nuity with a price instrument, we avoid weaknesses inherent in either individual
identification strategy. For instance, simply instrumenting residential prices with
the spot-market price may not entirely purge the endogenous, bad variation from
residential prices, as variation in the spot market likely results from both supply and
demand shocks. Our identification strategy instead takes variation from the spot
market and projects it across the utilities’ border, treating neighboring households
with prices that differ only due to which utility provides natural gas. Additionally,
our identification strategy also allows repeated “treatments” across the discontinu-
ity, as the utilities change residential natural gas prices each month. This repetition
of treatment both increases power and diminishes concerns regarding sorting, as
both sides of the border will be “treated” over time. Thus, we contend this two-
part identification strategy is well-suited for the challenges to identification in this
setting.

17See Tables 1.7, A.3–A.7 for the second-stage results comparing consumers’ responses to various
lags in price.

18This observation also draws upon Figure 1.6b.
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Spot price IV, first stage Panel A of Table 1.6 provides the first-stage estimates
for the two-stage least squares (2SLS) equations

log
(
pi,t

)
= π1a pspot

i,t + π1b pspot
i,t × SCGi + π2HDDbill

i,t + HHi + Cityi,t + ui,t (1.2)

log
(
qi,t

)
= η1

̂log
(
pi,t

)
+ η2HDDbill

i,t + HHi + Cityi,t + vi,t (1.3)

where HHi is a household fixed effect, Cityi,t is a city by month-of-sample fixed
effect, SCGi is an indicator for whether the household’s retail utility is SoCalGas,
and HDDbill

i,t is the number of heating degree days for household i during its billing
period that began in month t.

The spot-price by utility term is not collinear with the city by month-of-sample
fixed effects because households’ bills do not perfectly align with calendar months:
consequently, the bills span multiple price regimes (see Figure 1.7). In a bill that
spans two calendar months, the household receives a weighted average of the
two months’ price regimes. To instrument these weighted averages of prices, we
calculate corresponding weighted averages of the relevant spot prices by weighting
the months’ relevant spot prices by their temporal share of the bill.19

Figure 1.6b provides visual evidence of the first stage—illustrating (1) the link
between the two utilities’ prices and the Henry Hub spot price and (2) the utilities’
differential responses to the spot price. Throughout the rest of the paper, we define
the Henry Hub spot price as the average spot price for natural gas at the Henry Hub
during the seven days preceding the utility’s change in pricing.

Panel A of Table 1.6 displays the first-stage results for equation 1.2 using five
different prices that may be relevant to households: marginal price, average price,
average marginal price, baseline price, and simulated marginal price20 (using the
log of each price). Each price is the second lag of the contemporaneous price.21

Table 1.7 and Tables A.3–A.7 compare consumers’ varying responses to different
lags of price.

Both Figure 1.6b and Panel A of Table 1.6 demonstrate that the spot-price based
instruments are quite strong: the F statistics testing the joint significance of the
instruments range from 369.9 to 1,333.2. This significance is unsurprising, because
the utilities purchase gas on the spot market and incorporate these costs directly into
their price regimes. The significance of the interaction between spot price and utility
(SoCalGas) in the second row of Panel A in Table 1.6 confirms that the utilities differ
appreciably in incorporating spot-market costs into their pricing regimes: PG&E’s
pricing regime appears to be much less responsive to the contemporaneous spot
price than that of SoCalGas.22 Though the city by month-of-sample fixed effect

19See the appendix section Calculating bills for further discussion of bills spanning multiple
months.

20Simulated marginal price refers to a simulated instrument for marginal price. We discuss this
measure of price in the next section.

21The current bill is lag zero, the prior bill contains the first lag of price, and the bill preceding
the prior bill contains the second lag of price.

22One difference between the utilities’ pricing regimes is that PG&E does not have a fixed charge,
while SoCalGas does. Thus, PG&E recovers both fixed and volumetric costs through volumetric
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should control for most local demand shocks, bills do not perfectly match months.
The within-bill HDDs variable HDDbill

i,t in equation 1.2 controls for any remaining
weather-based demand shocks. The results in Table A.10 demonstrate robustness to
excluding (odd-numbered columns) or including (even-numbered columns) within-
bill heating degree days, which suggests that the instrument is exogenous to local
weather shocks, one of the key local-demand drivers in natural gas (Davis and
Muehlegger 2010; Levine, Carpenter, and Thapa 2014; Hausman and Kellogg
2015).

While the first stage is quite strong for all specifications, the results in Panel A of
Table 1.6 suggest the instrument is strongest—in terms of first-stage significance—
for baseline price, followed by average marginal price, average price, marginal
price, and finally simulated marginal price. A likely reason for this outcome is that
baseline price is the least noisy price: it is the only price that is not a function of the
consumer’s quantity, and it does not include variation from changes in the size of
the step between the two tiers’ prices. By these terms, (simulated) marginal price is
the noisiest, which is consistent with marginal price having the smallest first-stage
F statistic of the five prices.23

Instrumented prices and simulated instruments

In the preceding sections, we discussed how we interact a spot-price-pass-through
based instrument with a spatial discontinuity in utilities’ service areas to overcome
bias stemming from the classic form of simultaneity—i.e., quantity and price (our
dependent and independent variables) result from a simultaneously determined
equilibrium. We now discuss the aspect of our identification strategy that deals
with the price-is-a-function-of-quantity endogeneity present in multi-tiered pricing
contexts.24 We present three separate options for breaking this endogenous link
between price and quantity, but, in the end, the options yield very similar results.

Option 1: Instrumented prices One method for breaking the endogenous link
between a household’s price and its quantity is simply to instrument the household’s
price with a variable that is aggregated at a unit above household. Consider the IV
strategy discussed above: instrumenting a household’s price with the Henry Hub
spot price interacted with utility. Because this instrument only varies at the level of
billing-period by utility, when we regress a household’s endogenous price on this
instrument (and our set of fixed effects) in the first stage, the variation captured by
the predicted prices is only the variation that correlates with the spot price, which
is determined weeks, if not months, before the household’s consumption decision.
Thus, if the spot price provides a valid instrument in the classical simultaneity

charges to its customers.
23Although the first-stage estimates in Panel A of Table 1.6 have the flavor of pass-through results,

one should keep in mind that equation 1.2 specifies a log-linear form (logged price as the response
variable), which does estimate pass-through.

24This endogeneity is present in marginal price, average price, and average marginal price—all
three prices are functions of the individual household’s quantity consumed.
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context, it also provides a valid instrument for the second price-is-a-function-of-
quantity endogeneity.

Option 2: Baseline price In a similar manner, the baseline price provides a valid
instrument that breaks the price-is-a-function-of-quantity endogeneity. Because a
household’s baseline price is not a function of its quantity consumed, baseline
price does not suffer from the same endogeneity. Baseline price is also strongly
predictive of marginal (or average) price.25 Thus, in application, one could either
replace marginal (or average) price with baseline price or instrument one of the
endogenous prices with baseline price. There is at least one drawback to this
approach: baseline price, by definition, fails to capture the higher price that a
household faces when the household exceeds its total monthly allowance.

Option 3: Simulated instrument Simulated instruments26 provide a third option
for breaking the price-is-a-function-of-quantity flavor of endogeneity. The simulated-
instrument approach follows a methodology suggested in Ito 2014. Specifically,
this approach creates an instrument (or proxy) for marginal (or average) price by
plugging a lagged level of consumption into the current price regime, i.e.,

zi,t = pi,t (qt−k) (1.4)

The main idea for this instrument is using a household’s consumption history to
predict whether a household will face the baseline or excess price in the current
period. As with any instrument, we want to accomplish this prediction in a way that
is strongly predictive of the true outcome (the first stage) and that is uncorrelated
with any recent shocks to the household (the exclusion restriction) (Angrist and
Pischke 2009). For these reasons, we modify equation 1.4 slightly. First, we use the
households’ lagged consumption levels (from lagged bills 10 through 14 months
prior) to calculate the share of lagged periods that exceed this billing period’s
baseline allowance, i.e.,

si,t =
1
5

14∑
k=10

1
{
qi,t−k > Āi,t

}
(1.5)

where Āi,t is household i’s baseline allowance in time (bill) t. We then calculate the
simulated instrument for marginal price, zi,t, as

zi,t = 1
{
si,t ≤ 0.5

}
× pbase

i,t + 1
{
si,t > 0.5

}
× pexcess

i,t (1.6)

Summarizing equations 1.5 and 1.6: this simulated instrument for marginal price
predicts that a household will exceed its allowance when the majority of the house-
hold’s past bills (using lagged months 10 through 14) exceed the current bill’s

25The correlation between baseline price and marginal price is approximately 0.79; the correlation
between baseline price and average price is approximately 0.94. See Table A.1 for all bivariate
correlations between our five measures of price.

26Also called policy-induced instruments.
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allowance.27

Table A.2 provides evidence that this simulated-instrument approach significantly
predicts households’ marginal prices. Specifically, Table A.2 provides the estimate
and standard error for β in the equation

pmrg
i,t = βpsim

i,t + HHi + Cityi,t + wi,t (1.7)

where pmrg
i,t is household i’s marginal price in time t and psim

i,t is our simulated instru-
ment for household i’s marginal price in time t

(
i.e., pmrg

i,t

)
. The estimates for β in

Table A.2 confirm the strong “first stage” for this simulated instrument. Marginal
price and simulated marginal price are strongly and significantly correlated—both
t statistics are approximately 148. The two columns in Table A.2 also provide
evidence of the robustness of the simulated instrument to the choice of lags: the
estimates using lags 10–14 or 11–13 are virtually indistinguishable. In addition,
the bottom row of Table A.1 demonstrates that this simulated instrument is strongly
correlated with marginal price (r ≈ 0.85) in addition to the other four measures of
price.

Column 5 of Table 1.6 (Panel A) provides the first-stage results consistent with
equation 1.2 but with the simulated instrument of marginal price substituted (prox-
ying) for actual marginal price (and still instrumenting with spot price interacted
with utility across the utilities’ border).28 The first stage is again quite strong in
this specification, and the results are qualitatively similar to the results in columns
1–4 of Table 1.6, Panel A. Henceforth we will refer to the simulated instrument for
marginal price as simulated marginal price.

All subsequent results apply our two-part identification strategy which exploits
the utilities’ differential pass-through of spot-market prices to obtain exogenous
variation in residential natural gas prices across the border between the two utilities’
service areas. To incorporate the three competing options discussed immediately
above, we provide results consistent each the strategies: instrumenting with spot
price interacted with utility, proxying with baseline price, and employing simulated
marginal price (the simulated instrument/proxy for marginal price). We now turn
to our main results.

1.5 Results

In this section, we discuss the estimated price elasticities, using the empirical strate-
gies extensively discussed in the preceding section. After presenting the main results

27This simulated instrument is robust to the choice of months 10 through 14. The goal is to
keep the instrument in the same season as the current bill (maintaining a strong first stage), while
allowing some temporal distance between the lags and the current period (the exclusion restriction:
preventing short- and medium-run shocks from affecting both periods).

28It is worth noting that, in this paper, any result using the simulated instrument will have fewer
observations than other results, as the simulated instrument is greedier for data—for an observation
to remain in the dataset, its 14th lag must also be in the dataset. Our other price measures are not
as greedy.
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for the pooled elasticity (no heterogeneity), we examine whether households’ price
responses (i.e., elasticities) vary by season and/or by income.

1.5.1 Pooled price elasticity of demand for natural gas

Panel B of Table 1.6 displays the elasticity results from the second-stage regression
specified in equation 1.3. These results instrument log price with the Henry Hub
spot price (interacted with utility), exploit the spatial discontinuity, and use the
log of daily average consumption (in therms) as the outcome. The five columns
each estimate the elasticity using the log of a different type of price: marginal
price, average price, average marginal price, baseline price, and simulated marginal
price. As discussed above, each price is the second lag of price, as opposed to the
contemporaneous price. The estimates for the price elasticity of demand range from
−0.17 (simulated marginal price) to −0.23 (average price).

Panel B of Table 1.6 indicates that the estimated elasticity is fairly robust to
the type of price. Table A.11 demonstrates that the estimated elasticity is also ro-
bust to the inclusion/exclusion of heating degree days and to the levels of fixed
effects—ranging from city by month-of-sample fixed effects to zip-code by week-of-
sample fixed effects (while still including household fixed effects). The robustness
to type of price also demonstrates robustness to how we control for the price-is-a-
function-of-quantity endogeneity discussed above. Tables A.11–A.15 demonstrate
the robustness of the estimated elasticity to excluding within-bill heating degree
days and varying the spatiotemporal fixed effects. Finally, Table A.16 contains
marginal-price based elasticity estimates as we incrementally extend the study-area.
Beginning with the study area (Common Zips), we add the zip codes neighboring
(bordering) the study area (Neighbors 1); we then add the neighbors of the neigh-
bors (Neighbors 2); last, we add a third band of neighbors (Neighbors 3). Figure A.4
illustrates these groups of neighboring zip codes. The estimated elasticity from the
first group of neighbors (−0.19 (0.05) in column 2 of Table A.16) is quite close to
the elasticity previously discussed (−0.21, (0.07) in column 1); the elasticities that
include the second and third peripheral neighbors diminish in magnitude (−0.12
and −0.09) but still differ significantly from zero.

Compared to their OLS-based counterparts in Table 1.5, the marginal-price
based 2SLS estimates for the elasticity of demand now have opposite—and the-
oretically correct—signs. The magnitudes of the 2SLS estimates of the elasticity
(approximately −0.20) are theoretically reasonable and within the range of pre-
vious findings. Furthermore, these estimates are plausibly identified and utilize
consumers’ actual prices.

As discussed above, the results discussed up to this point—e.g., the results
in Table 1.6—estimate the price elasticity of demand for residential natural gas
using the second lag of the various prices. In order for a household to know the
prices of its contemporaneous bill, the household would need to closely follow
the approved advice letters published online by the utility or the California Public
Utilities Commission. Otherwise, the household will learn about prices from past
bills—hence the use of lagged prices. Because a household will not receive the bill
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for the previous billing period for several days into its current billing period—and
because the household may not view the previous bill until it pays the bill (or its
credit card bill, if the household uses automatic bill payment) weeks later—the
household may not know the prices from its immediately previous bill until the
current period is nearly over. For these reasons, it is plausible that the second lag of
price is the most salient price to many households. Figure 1.7 illustrates an example
of the timing for bill delivery, bill payment, and the relevant lags of prices.

Table 1.7 replicates the second-stage results for marginal price and average price
but varies the lag/lead of price: beginning with the first lead of price, followed by
contemporaneous price, the first lag of price, and finally the second lag of price.
Tables A.3–A.7 provide further detail, varying the lead/lag of each of the five prices—
ranging from the first lead of price to the third lag of price. Across the five types
of measures of price, none of the first leads of price, contemporaneous prices,
or first lags of price differ significantly from zero. For each type of price, both
the second and third lags of price differ significantly from zero. For each price,
the second-lag based elasticity slightly exceeds the third-lag based elasticity in
magnitude, but the difference does not exceed the standard error. These results are
consistent with households responding to two-to-three lags of price—as opposed to
contemporaneous price—suggesting some degree of inattention by the household
to the true price, akin to previous work on inattention and salience, e.g., Chetty,
Looney, and Kroft 2009; Sallee 2013; Allcott and Taubinsky 2015.

1.5.2 Heterogeneity

We now examine evidence of heterogeneity in the price elasticity of demand for nat-
ural gas. The institutional setting of this paper motivates two relevant dimensions
of heterogeneity—income level and season—as the CPUC and utilities already apply
different price regimes to households depending upon (1) the season of year (sum-
mer vs. winter) and (2) the household’s income level (specifically, CARE status). If
heterogeneity exists, then the regressions in the preceding section pool across the
heterogeneous effects. This pooled parameter estimate may still be relevant for pol-
icy applications—particularly for policies that cannot differentiate between seasons
and/or income groups. However, because OLS weights heterogeneous treatment
effects by their shares of the residual variation in the variable of interest—which is
itself a function of (1) the numbers of observations in the heterogeneous groups and
(2) the (residual) within-group variance in the variable of interest (Solon, Haider,
and Wooldridge 2015)—one might wonder whether the pooled estimator always
provides a policy-relevant estimate. In addition, in the presence of heterogeneous
elasticities, policymakers can increase efficiency by integrating these (known) het-
erogeneities (Ramsey 1927; Boiteux 1971; Davis and Muehlegger 2010).

For income-based heterogeneity, we use a household’s CARE status as a proxy
for its income level.29 As discussed above, households qualify for CARE by either

29Because we do not have identifying variation in income level (or season), the heterogeneities
that we estimate should be taken as descriptive for the given group, rather than causal effects of
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meeting low-income qualifications or by receiving benefits from one of several
state or federal assistance programs (e.g., Medi-Cal or the National School Lunch
Program) (Southern California Gas Company 2016). For seasonal heterogeneity,
we split the calendar into winter months (October through March) and summer
months (April through September).30

Income heterogeneity

To examine income-based heterogeneity in the price elasticity of demand for natural
gas, we estimate the two-stage least squares equations 1.2 and 1.3 separately for
CARE households and non-CARE households. Columns (3) and (4) of Table 1.8
supply the second-stage results from these regressions, providing estimates of the
elasticity of demand by income level (CARE status).

The results in columns (3) and (4) of Table 1.8 suggest that the elasticity results
in the previous section may in fact pool across heterogenous elasticities; we estimate
that the price elasticity for CARE (lower-income) households is approximately twice
that of non-CARE (higher-income) households. Specifically, using the marginal
price, we estimate an elasticity of approximately −0.24 (0.080) for CARE (lower
income) households and −0.14 (0.068) for non-CARE households. The “pooled”
estimate corresponding to these results is −0.21 (0.071) (column (1) of Panel B in
Table 1.6)—slightly higher than the midpoint between the CARE estimate and the
non-CARE estimate.

Seasonal heterogeneity

To estimate seasonal heterogeneity in the price elasticity of demand for residential
natural gas, we estimate the two-stage least squares equations 1.2 and 1.3 sepa-
rately for winter months and for summer months. Columns (1) and (2) of Table 1.8
supply the second-stage results from these regressions, providing estimates of the
elasticity of demand by season.

The results in columns (1) and (2) of Table 1.8 indicate a stark and significant
difference between price elasticities in summer and winter months. Using marginal
price, we estimate that the price elasticity of demand for natural gas in summer
months is approximately 0.052 (0.029), which marginally differs from zero at the
10 percent level. The estimated elasticity for winter months is approximately −0.38
(0.14) and differs significantly from zero at the 1 percent level. The comparable
“pooled” elasticity estimate corresponding to these results is approximately −0.21
(0.071) (column (1) of Panel B in Table 1.6). These results provide strong evidence

income level or season. In other words, while we estimate heterogeneous elasticities with respect to
income level, this heterogeneity may have nothing to do with income and could instead result from
some other (omitted) variable that correlates with income/CARE status, e.g., the age and size of the
physical home. However, identification of the sources of heterogeneity is not the goal of this paper;
we aim to identify the elasticity of demand and demonstrate dimensions of heterogeneity. We leave
it for future papers to identify the sources of these heterogeneities.

30This definition reflects southern California’s two seasons: warm and slightly less warm.
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that households’ consumptive and price-response behaviors vary considerably by
season—the winter-based elasticity is nearly twice the “pooled” elasticity.3132

Income-by-season heterogeneity

Having shown potential heterogeneity across income groups (CARE status) and
season, we now examine the evidence that income groups’ heterogeneity varies by
season by interacting the two heterogeneity dimensions discussion above (income
and season).

To estimate seasonal-by-income heterogeneity in the own-price elasticity of
demand for residential natural gas, we estimate the two-stage least squares equa-
tions 1.2 and 1.3 separately for the four potentially heterogeneous subgroups: CARE
households in the summer, non-CARE households in the summer, CARE households
in the winter, and non-CARE households in the winter. Table 1.9 displays the
second-stage results from these regressions, providing estimates of the elasticity of
demand by season and CARE status.

The results in Table 1.9 are consistent with heterogeneous elasticities that de-
pend upon the interaction between household income (CARE status) and season. In
other words, the difference between a household’s winter and summer price elastic-
ities varies by the household’s income level. Specifically, the results in Table 1.9 in-
dicate that both income groups are essentially inelastic to prices in summer months;
we estimate a “summertime” price elasticity of 0.046 (0.035) for CARE households
and 0.074 (0.032) for non-CARE households. Both elasticities are positive, but
only one is significantly different from zero and small. In winter months, both
sets of consumers are significantly and substantially more responsive to price, but
CARE households are particularly price responsive. We estimate the “wintertime”
price elasticity of demand for natural gas is −0.523 (0.142) for CARE households
and −0.317 (0.150) for non-CARE households. Again, the pooled elasticity corre-
sponding to these results is approximately −0.21 (0.071) (column (1) in Table 1.6),
which is a bit lower than the average of these four elasticities. Overall, Table 1.9
demonstrates the potential for substantial and important heterogeneity underlying
commonly estimated pooled elasticities.

1.6 Discussion and conclusion

This paper combines millions of household natural gas bills with a multi-part iden-
tification strategy to provide the first micro-data based causal estimates of the own-
price elasticity of demand for residential natural gas. Utilizing cross-border price
variation between California’s two largest natural gas utilities— resulting from the

31Table A.8 reproduces these heterogeneity results using average price—rather than marginal
price—with very similar results.

32Because the current/relevant natural gas institutions divide the year into winter and summer—
and because gas is primarily used for heating—we believe this summer/winter split is the most
policy-relevant temporal disaggregation of the price elasticity of residential natural gas. We do not
further disaggregate in time.
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utilities differential pass-through of spot-market price variation—we isolate plausi-
bly exogenous variation in residential natural gas prices. We estimate an elasticity
of −0.21 [−0.35, −0.07]. This estimate is robust to specification choices that include
within-bill weather, several price instruments, and the definition/type of price. The
point estimates for the own-price elasticity range from −0.23 to −0.17 across five
measures of price. Given the robustness of these findings, this paper provides tight
bounds on a policy-relevant parameter key to applications ranging from estimat-
ing the welfare benefits of fracking (Hausman and Kellogg 2015) to analyzing the
regressivity of two-part tariffs (Borenstein and Davis 2012). Because households
respond significantly to price changes two to four months prior to the period of
consumption—and following Ito 2014—we interpret these estimated elasticities as
fairly medium-run elasticities.33

As a second important finding, we estimate that the own-price elasticity of de-
mand varies significantly across seasons and customer types. We show that house-
holds on a popular low-income program, which subsidizes households’ natural gas
and electricity, appear to be twice as elastic in their response to price as households
who are not part of the program. We also show that the price elasticity varies greatly
across seasons. If we average across types of households, the summer price elastic-
ity is close to, and only marginally different from, zero. The winter price elasticity
is −0.38. This heterogeneity suggests that households are much more price sensi-
tive during their high-consumption months—the winter. These high-consumption
winter months also correspond to the time of year in which consumers use natural
gas in its most salient form: heating. When we break down the price elasticity
across users and seasons, we show that subsidized consumers display the largest
price sensitivity during the winter (−0.52). Neither type of customer displays a
substantial price response in the summer. These results suggest that, if suppliers
want to pass through costs to (or tax) consumers, summertime may be best—both
for efficiency and for progressivity. This point hinges critically on the assumption
that external costs from natural gas combustion are properly priced. For global
pollutants, this is the case in California because the natural gas sector is part of
California’s cap and trade system.

Figure 1.9 illustrates the seasonal heterogeneity point with simple linear de-
mand that is quite inelastic in the summer and moderately elastic in the winter—
consistent with our results. The top row of Figure 1.9 demonstrates that, in this
scenario, deadweight loss is substantially larger in the winter than in the summer.
The bottom row simply doubles the summer tax and halves the winter tax, result-
ing in a minuscule increase in deadweight loss for the summer and a substantial
reduction in deadweight loss in the winter—implying a considerable overall reduc-
tion in deadweight loss.34 Again, it is worth noting that this example also assumes
(1) a first-best world (no unpriced costs to consumption) and (2) the goal of the
policymaker is reducing deadweight loss conditional on some level of tax/cost re-

33Ito also notes that the medium-run elasticity is often the most policy-relevant elasticity.
34This toy example is meant to illustrate an idea. The most efficient seasonal tax adjustment—

conditional on a level of tax recovery—would likely not imply exactly doubling taxes in the summer
and halving taxes in the winter.
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covery. If, for instance, natural-gas consumption includes an unpriced social cost,
then increasing summer taxes and reducing winter taxes could potentially further
reduce market efficiency by exacerbating the unpriced costs. Similarly, if the policy-
maker wishes to use the tax to reduce consumption, then our results suggest that
imposing a per-unit tax in the winter is much more efficient than the same tax in
the summer.35 However, our season-by-income results imply that the poor would
bear the largest deadweight loss for such a tax.

The discussion above suggests a dimension for tax and cost-recovery efficiency—
season of year—that we have not seen recommended in the literature or applied
in practice. This fairly simple idea raises a wider question for future work: Along
which other dimensions of consumer heterogeneity might we optimize current tax
and cost-recovery policies? If policy is to take seasonal heterogeneity—or any other
heterogeneity—into account, future work should decompose traditionally pooled
elasticities and policy responses. Such work will provide policymakers with impor-
tant parameters to improve market efficiency and enhance policy progressivity.

35In terms of units of abatement per dollar of tax levied.
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1.7 Figures

Figure 1.1: U.S. natural gas institutional organization

N. American producers LNG imports/exports

Processors

Storage Pipeline LNG terminals

Local distribution companies (LDCs)

Electricity plants Industrial users

Residential and commercial users

Notes: Overbars represent points of entry into the U.S. natural gas market; underbars represent
end points in the market; all other labels represent intermediaries. Arrow directions correspond to
the direction of the flow of natural gas. The acronym LNG abbreviates liquid natural gas. This figure
is based on Levine, Carpenter, and Thapa 2014 with modification following Brown and Yücel 1993.
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Figure 1.2: U.S. natural gas pipeline network

Notes: This map depicts the intra- and inter-state natural gas pipeline network for the (continental) United States (in black) overlayed on a map of
the (continental) U.S. (light gray). Source: U.S. Energy Information Administration
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Figure 1.3: Henry Hub natural gas spot price: Daily, 1997–2016
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Figure 1.4: Households’ allowances and prices

(a) Allowance and marginal vs. average price example: PG&E, January 2009, climate
zone R
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(b) Tier-one daily allowances over time: PG&E (zone R) and SoCalGas (zone 1),
2009–2015
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Notes: Households receive daily allowances for baseline (first-tier) consumption as a function of
location and season (e.g., climate zone R, January 2009). The household pays the second-tier price
on all units that exceed its allowance—comparing total consumption (during the billing period) to
total allowance (daily allowance summed across the bills’ days).
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Figure 1.5: Natural gas service areas and the study-area discontinuity

Utility presence: PG&E SoCalGas PG&E and SoCalGas
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Notes: The left side of the figure displays PG&E’s and SoCalGas’s services areas (by 5-digit zip code). The right side of the figure zooms in on three
clusters of cities that receive service from both utilities. These three clusters of cities encompass 39 zip codes; 18 of these (5-digit) zip codes receive
service from both PG&E and SoCalGas. These 18 zip codes represent the main study area for the paper.
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Figure 1.6: Prices across utilities, tiers, and in the spot market, 2009–2015

(a) Price regimes over time: PG&E and SoCalGas, 2009–2015
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(b) Correlation across prices Three relevant natural gas price series, 2009–2015

0.0

0.4

0.8

1.2

2010 2012 2014 2016

Date

P
ri

ce
 (

U
SD

 p
er

 t
h
er

m
)

Price: Henry Hub spot PG&E SoCalGas

Notes: Baseline refers to first-tier price, i.e., the price a household pays for its first therm of natural
gas. Excess refers to the second-tier price, i.e., the price a household pays for each therm that
exceeds its first-tier allowance (see Figure 1.4). The Henry Hub spot price is generally recognized
as a national benchmark (U.S. Energy Information Administration 2016a; Levine, Carpenter, and
Thapa 2014).

30



www.manaraa.com

Figure 1.7: Calendar months and billing periods: Four 30-day bills and five
months
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Notes: A consumer receives her bill from the Lag 1 period on the fifth business day of her current
billing period (the 17th). Payment for the Lag 1 bill is due two weeks later (on the 1st). Now
consider “Which lag of price is relevant?” Current: For the consumer to know the prices in her
current billing period, she must read her utility’s advice-letter correspondences with CPUC. Lag 1:
Again, unless she pays attention to her utility’s CPUC-approved advice letters, the consumer will
not know the prices in the Lag 1 billing period until she receives and opens her bill. The bill arrives
several days into the new period, and she does not see the bill until payment, the consumer may
not learn about the prices of the Lag 1 bill until the current billing period is nearly complete.
Autopay potentially extends this moment of salience even further into the future. Lag 2:
Throughout the entirety of her Current billing period, the consumer knows the prices from her Lag
2 bill, and for a non-zero amount of time, the Lag 2 bill is the most recent set of prices the she
knows. Lag 3: Same level of knowledge as Lag 2 but less recent.
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Figure 1.8: Natural gas and electricity prices: Comparing utilities and industries

(a) Comparing trends in levels, 2010–2014
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(b) Comparing trends in differences across utilities, 2010–2014
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Notes: For the consumers in this paper, natural gas prices do not significantly correlate with
electricity prices—neither in levels (Panel A), nor in differences (Panel B). Differences constitute
PG&E minus SoCal within the same calendar month. We demean the time series of differences for
each industry (natural gas and electricity). SoCal denotes the Southern California Gas Company for
natural gas and Southern California Edison for electricity. The underlying data come from publicly
available CPUC letters for the relevant utilities.
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1.8 Tables

1.8.1 Descriptive tables

Table 1.1: Prior point estimates: The price elasticity of demand for residential
natural gas

Paper Data Estimate

Davis and Muehlegger (2010) US state panel −0.278

Maddala et al. (1997) US state panel −0.09 to −0.18

Garcia−Cerrutti (2000) Calif. county panel −0.11

Hausman and Kellogg (2015) US state panel −0.11

Herbert and Kreil (1989) Monthly time series −0.36

Houthakker and Taylor (1970) Time series −0.15

Metcalf and Hassett (1999) RECS HH panel −0.08 to −0.71

Meier and Rehdanz (2010) UK HH panel −0.34 to −0.56

Rehdanz (2007) Germany HH panel −0.44 to −0.63

Sources: Authors and Alberini et al. (2011)

Table 1.2: Billing data summaries

Full dataset Border-area dataset

PG&E SoCalGas PG&E SoCalGas

N. 5-digit zip codes 597 611 18 18

N. 9-digit zip codes 680,846 610,207 18,047 16,295

N. unique households 5,888,276 2,526,503 152,418 68,407

N. bills 180,663,705 95,335,393 3,401,947 2,352,141

Approx. value (USD) $5.71B $3.28B $120M $70.5M

Notes: Full dataset refers to all of the PG&E and SoCalGas bills in the data. Border-area (discontinu-
ity) dataset refers to the subset of the full dataset for households located in the 18 5-digit zip codes
served by both utilities during 2010–2014.
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Figure 1.9: Increasing tax efficiency using seasonal heterogeneity
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Notes: Each figure presents the combination of a tax (current vs. proposed) and a season; the x and
y axes are quantity and price, respectively. The top row illustrates the two seasons under the
current tax, where households pay the same tax per therm in both seasons. The shaded gray area
gives the deadweight loss (DWL) under this tax. Proposed tax: The bottom row doubles the tax in
the summer—increasing DWL by the narrow pink region—and halves the tax in the
winter—reducing DWL by the purple region. Overall DWL decreases.
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Table 1.3: Numerical summaries: Prices, quantities, and other variables of interest

5% Sample of California Border-discontinuity sample

Split by utility Split by season Split by CARE

Variable Overall PG&E SoCalGas Overall Winter Summer CARE Non-Care

Baseline price 0.890 0.982 0.743 0.903 0.884 0.920 0.808 0.981
[0.169] [0.121] [0.124] [0.142] [0.136] [0.145] [0.085] [0.131]

Average price 1.014 1.105 0.868 1.021 1.001 1.040 0.909 1.115
[0.185] [0.144] [0.144] [0.162] [0.158] [0.164] [0.100] [0.143]

Marginal price 1.021 1.128 0.850 1.039 1.012 1.064 0.934 1.126
[0.226] [0.186] [0.173] [0.198] [0.191] [0.202] [0.145] [0.194]

Therms 35.463 37.754 31.814 33.827 50.954 17.731 33.114 34.420
[33.780] [36.011] [29.579] [30.770] [35.249] [11.580] [28.763] [32.331]

Days 30.399 30.428 30.353 30.399 30.588 30.223 30.404 30.396
[1.428] [1.267] [1.651] [1.304] [1.384] [1.197] [1.276] [1.326]

Therms per day 1.159 1.236 1.038 1.106 1.659 0.587 1.084 1.125
[1.092] [1.170] [0.943] [0.994] [1.135] [0.384] [0.930] [1.043]

Total bill 36.870 42.394 28.075 34.951 52.075 18.857 30.314 38.804
[39.576] [44.056] [29.045] [33.881] [39.897] [14.007] [27.257] [38.102]

(Percent) CARE 27.43% 26.35% 29.15% 45.38% 45.00% 45.74% 100% 0%

Notes: Unbracketed values provide the variables’ means; bracketed values denote the variables’ standard deviations. The 5% sample of California is
based upon 5% of PG&E’s and SoCalGas’s natural gas bills from 2010–2014, sampling at the 5-digit zip code. The border-discontinuity sample represents
all bills from PG&E and SoCalGas for the 18 5-digit zip codes served by both utilities from 2010–2014.
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Table 1.4: Balance on observables: Comparing utilities’ customers across the
discontinuity

Non-CARE CARE

Variable PG&E SoCalGas Diff. PG&E SoCalGas Diff.

Panel A: Summer

Therms 17.61 17.29 0.32 19.35 18.00 1.34
[10.8] [11.7] [11.3] [11.3] [11.3] [11.3]

Days in bill 30.31 29.97 0.34 30.29 29.96 0.33
[1.16] [1.36] [1.28] [1.16] [1.36] [1.22]

Allowance 14.17 17.22 −3.05 14.14 17.11 −2.96
[0.805] [8.05] [6.14] [0.851] [8.17] [4.33]

Total bill 21.58 16.45 5.14 19.03 13.52 5.51
[14.8] [12.4] [13.8] [12.4] [9.35] [11.9]

HDDs 0.16 0.25 −0.08 0.14 0.26 −0.12
(thousands) [0.309] [0.407] [0.367] [0.267] [0.418] [0.315]

N 810,949 961,824 1,772,773 973,063 320,082 1,293,145

Panel B: Winter

Therms 51.40 54.07 −2.67 49.60 49.94 −0.34
[33.8] [35.7] [34.8] [31.1] [33.1] [31.6]

Days in bill 30.55 30.78 −0.24 30.57 30.83 −0.26
[1.31] [1.8] [1.59] [1.31] [1.81] [1.45]

Allowance 46.70 49.07 −2.37 47.16 49.68 −2.52
[12.8] [10.7] [11.8] [12.4] [10.4] [12]

Total bill 59.79 50.60 9.19 45.35 36.51 8.84
[41.8] [36.4] [39.4] [30.3] [26.5] [29.7]

HDDs 1.69 1.73 −0.04 1.70 1.75 −0.05
(thousands) [0.467] [0.437] [0.452] [0.439] [0.422] [0.435]

N 746,140 800,037 1,546,177 871,795 270,198 1,141,993

Notes: Unbracketed values provide the variables’ means; bracketed values denote the variables’
standard deviations. The standard deviations below the difference column (Diff.) are pooled across
utilities. The difference column denotes the difference in means across utilities for the given
cross-section of data. For example, the rightmost Diff. column in Panel A gives the difference
between the PG&E mean and the SoCalGas mean for CARE households in summer months,
X̄P G E − X̄S C G . CARE households participate in the California Alternative Rates for Energy (CARE)
program. CARE targets low-income households and provides a 20 percent discount on natural gas
bills. Heating degree days (HDDs) are in thousands. We calculate the number of heating degrees
for day t with mean temperature T̄t (in ◦F) as HDDt = 1

{
T̄t < 65

}
×

(
65 − T̄t

)
. The HDDs variable

above is thus HDDS =
∑

t HDDt/1000.
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Table 1.5: OLS Results: Estimating elasticities, varying the dataset, price, and fixed effects

Dependent variable: Log(Consumption, daily avg.)

(1) (2) (3) (4) (5) (6)

Log(Marginal price) 0.4698∗∗∗ 0.4346∗∗∗ 0.4276∗∗∗

(0.0106) (0.0136) (0.0134)

Log(Baseline price) 0.0217 −0.0918∗∗∗ −0.1009∗∗∗

(0.0147) (0.0201) (0.0209)

Bill HDDs T T T T T T
Household FE T T T T T T
Month-of-sample FE T T F T T F
City by month-of-sample FE F F T F F T
Sample 5% CA Border Border 5% CA Border Border
N 12,855,910 5,754,088 5,754,088 12,855,910 5,754,088 5,754,088

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1) household and (2) utility by climate-zone by billing-cycle
(the level at which price varies). All regressions include heating degree days (HDDs) within the households’ billing cycle. Base or baseline price refers
to the price the household pays for its first unit (therm) of natural gas. Each price in the table is the second lag of price, i.e., the prices from two bills
prior to the current bill. Significance levels: *10%, **5%, ***1%.
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1.8.2 2SLS results
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Table 1.6: First- and second-stage results:
Instrumenting consumers’ prices with the Henry Hub spot price

Dependent variable: Log(Consumption, daily avg.)

Panel A: First-stage results
(1) (2) (3) (4) (5)

Marginal Average Avg. Mrg. Baseline Sim. Mrg.

Spot price 0.3679∗∗∗ 0.3697∗∗∗ 0.3384∗∗∗ 0.4699∗∗∗ 0.3949∗∗∗

(0.0774) (0.0521) (0.0570) (0.0434) (0.0840)

Spot price 0.7868∗∗∗ 0.7174∗∗∗ 0.9389∗∗∗ 0.8212∗∗∗ 0.8174∗∗∗

× SoCalGas (0.0299) (0.0186) (0.0198) (0.0176) (0.0317)

Panel B: Second-stage results

Log(Price) −0.2098∗∗∗ −0.2312∗∗∗ −0.1734∗∗∗ −0.2030∗∗∗ −0.1705∗∗

(instrumented) (0.0706) (0.076) (0.0585) (0.065) (0.0698)

First-stage F stat. 418.4 899.4 1,311.0 1,333.2 369.9
Bill HDDs T T T T T
Household FE T T T T T
City mo.-of-sample FE T T T T T
N 5,754,085 5,754,085 5,754,085 5,754,085 4,682,526

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1) household and (2) utility by climate-zone by billing-cycle
(the level at which price varies). All regressions include heating degree days (HDDs) within the houesholds’ bill. (HH) Spot price refers to the weekly
average spot price for natural gas at Louisiana’s Henry Hub in the week preceding the utility’s price change. Each price in the table is the second lag of
price, i.e., the prices from two bills prior to the current bill. Avg. or average price is the total bill divided by quantity. Avg. Mrg. or average marginal
price denotes the quantity-weighted average of the household’s marginal price. Sim. Mrg. or simulated marginal price is the household’s marginal price
(using the relevant pricing regime) as a function of the household’s historical consumption patterns (lagged bills 10 through 14). As discussed in the
empirical strategy section, the numbers of observations differ due to the lags required to calculate the simulated instrument for marginal price.
Significance levels: *10%, **5%, ***1%.
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Table 1.7: Comparing lags, second-stage results: Marginal and average prices with HH spot price IV

Dependent variable: Log(Consumption, daily avg.)

Marginal Price Average Price

(1) (2) (3) (4) (5) (6) (7) (8)
1 Lead No lag 1 Lag 2 Lags 1 Lead No lag 1 Lag 2 Lags

Log(Price) 0.0480 −0.1121 −0.0223 −0.2098∗∗∗ 0.0515 −0.1244 −0.0177 −0.2312∗∗∗

instrumented (0.0902) (0.0762) (0.0668) (0.0706) (0.0972) (0.0805) (0.0730) (0.0760)

First-stage F stat. 326.7 337.9 410.8 418.4 679.1 725.8 884.4 899.4
Bill HDDs T T T T T T T T
Household FE T T T T T T T T
City-month FE T T T T T T T T
N 5,501,467 5,754,088 5,754,088 5,754,085 5,501,467 5,754,088 5,754,088 5,754,085

Notes: The city-month FE is the interaction of city and month-of-sample. With regard to lags: No lag refers to the price for the household’s
contemporaneous bill; 1 Lag refers to the price on the household’s previous bill; etc. Avg. or average price is the total bill divided by quantity. (HH) Spot
price refers to the weekly average spot price for natural gas at Louisiana’s Henry Hub in the week preceding the utility’s price change. Each column
denotes a separate regression. Errors are two-way clustered within (1) household and (2) utility by climate-zone by billing-cycle (the level at which
price varies). All regressions include heating degree days (HDDs) within the households’ billing period. Significance levels: *10%, **5%, ***1%.
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1.8.3 Heterogeneity results

Table 1.8: Heterogeneity by season or income:
Second-stage results, instrumenting marginal price with HH spot price

Dependent variable: Log(Consumption, daily avg.)

Marginal Price

Split by Season Split by CARE (Income)

(1) (2) (3) (4)
Summer Winter CARE Non-CARE

Log(Price) 0.0519∗ −0.3769∗∗∗ −0.2443∗∗∗ −0.1413∗∗

instrumented (0.0285) (0.1399) (0.0794) (0.0684)

First-stage F stat. 319.6 174.2 393.7 335.8
Bill HDDs T T T T
Household FE T T T T
City month-of-sample FE T T T T
N 3,065,917 2,688,168 2,435,135 3,318,950

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1)
household and (2) utility by climate-zone by billing-cycle (the level at which price varies). All
regressions include heating degree days (HDDs) within the households’ billing period. Each price in
the table is the second lag of price, i.e., the prices from two bills prior to the current bill. Summer
includes April through September. Winter includes October through March. CARE households
participate in the California Alternative Rates for Energy (CARE) program. CARE targets
low-income households and provides a 20 percent discount on natural gas bills. We estimate the
heterogeneity results by splitting the sample along the dimension(s) of heterogeneity and then
individually estimating the models. Significance levels: *10%, **5%, ***1%.
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Table 1.9: Heterogeneity by season and income:
Second-stage results, instrumenting marginal price with HH spot price

Dependent variable: Log(Consumption, daily avg.)

Marginal Price

(1) (2) (3) (4)
Summer Summer Winter Winter

CARE Non-CARE CARE Non-CARE

Log(Price) 0.0457 0.0742∗∗ −0.5226∗∗∗ −0.3173∗∗

instrumented (0.0353) (0.0324) (0.1424) (0.1498)

First-stage F stat. 303.4 237.1 145.6 156.7
Bill HDDs T T T T
Household FE T T T T
City month-of-sample FE T T T T
N 1,293,144 1,772,773 1,141,991 1,546,177

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1)
household and (2) utility by climate-zone by billing-cycle (the level at which price varies). All
regressions include heating degree days (HDDs) within the households’ billing period. Each price in
the table is the second lag of price, i.e., the prices from two bills prior to the current bill. Summer
includes April through September. Winter includes October through March. CARE households
participate in the California Alternative Rates for Energy (CARE) program. CARE targets
low-income households and provides a 20 percent discount on natural gas bills. We estimate the
heterogeneity results by splitting the sample along the dimension(s) of heterogeneity and then
individually estimating the models. Significance levels: *10%, **5%, ***1%.
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2 | Are our hopes too high? Testing
cannabis legalization’s potential
to reduce criminalization

Chapter abstract Cannabis legalization advocates often argue that cannabis
legalization offers the potential to reduce the private and social costs related to
criminalization and incarceration—particularly for marginalized populations.
While this assertion is theoretically plausible, it boils down to an empirically
testable hypothesis that remains untested: does legalizing a previously illegal
substance (cannabis) reduce arrests, citations, and general law-enforcement
contact? This paper provides the first causal evidence that cannabis legaliza-
tion need not necessarily reduce criminalization—and under the right circum-
stances, may in fact increase police incidents/arrests for both cannabis products
and non-cannabis drugs. First, I present a theoretical model of police effort
and drug consumption that demonstrates the importance of substitution and
incentives for this hypothesis. I then empirically show that before legaliza-
tion, drug-incident trends in Denver, Colorado matched trends in many other
US cities. However, following cannabis legalization in Colorado, drug inci-
dents spike sharply in Denver, while trends in comparison cities (unaffected
by Colorado’s legalization) remain stable. This spike in drug-related police
incidents occurs both for cannabis and non-cannabis drugs. Synthetic-control
and difference-in-differences empirical designs corroborate the size and signifi-
cance of this empirical observation, estimating that Colorado’s legalization of
recreational cannabis nearly doubled police-involved drug incidents in Denver.

2.1 Introduction

Cannabis legalization advocates often argue that cannabis legalization offers the
potential to reduce the costs of criminalization and incarceration for society and
individuals—and particularly for marginalized populations who especially suffer
from the criminalization of drug offenses. While this assertion is theoretically plau-
sible, it boils down to an empirically testable hypothesis that remains untested in
the economic and criminal-justice literatures: does legalizing a previously illegal
substance (i.e., cannabis) reduce arrests, citations, and general contact with law-
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enforcement personnel? This paper presents the first causal evidence that cannabis
legalization need not necessarily reduce criminalization—defined as crime-related
interactions with law-enforcement personnel—and under the right circumstances,
may in fact increase incidents, arrests, and citations for both cannabis products and
non-cannabis drugs. To formalize the underlying/competing mechanisms, I create
a theoretical model for police enforcement effort and consumer’s drug choices. This
model highlights the importance of effort constraints, substitution, and incentives
when asking whether cannabis legalization will reduce criminalization. Then, to
empirically test the hypothesis that cannabis legalization reduces criminal-justice
pressures, I create a city-level panel of police-based drug incidents—including the
type(s) of drug(s) involved in the incidents. I then show that before legalization,
trends in drug-related police incidents for Denver, Colorado matched trends for
many other US cities. However, following cannabis legalization in Colorado, drug
incidents spike sharply in Denver, while trends in comparison cities (unaffected
by Colorado’s legalization) remain stable. This spike in drug-related police inci-
dents occurs both for cannabis and non-cannabis drugs. Having established this
empirical fact, I then use the temporal variation of Colorado’s legalization, in con-
junction with two different empirical designs—generalized synthetic controls and
difference in differences—to formally test whether Colorado’s legalization of recre-
ational cannabis reduced (or increased) cannabis and non-cannabis drug incidents
in Denver. The results strongly suggest that legalizing recreational cannabis nearly
doubled police-involving drug incidents in Denver. These results provide an im-
portant case study in drug-policy, policing, and general public policy with many
potential lessons. These lessons are particularly relevant today, as many countries,
states, and cities are currently revisiting their policies that govern both cannabis
and policing.

2.2 Institutions

Before diving into the theory and empirics of cannabis legalization, I will briefly
outline the major events and institutions relevant to this paper’s case study: Col-
orado’s legalization and implementation of recreational cannabis. Figure 2.1 depicts
several important legal events relevant to marijuana legalization in Colorado. Col-
orado legalized medicinal marijuana use in November 2000 via Amendment 20 and
legalized recreational marijuana use in November 2012 through Amendment 64.
Colorado governor John Hickenlooper signed Amendment 64 into law on Decem-
ber 10, 2012 and promptly formed a task force to “consider and resolve a number
of policy, legal, and procedural issues” (Colorado 2012a). This task force issued
its report to the governor in March 2013, making recommendations on regulatory
structure, regulatory financing, taxation, licensing requirements, transition to le-
galized recreational marijuana, consumers, and criminal law. The task force states
that its report “contains a plethora of suggestions for safely growing and processing
marijuana, as well as packaging and labeling it. The Task Force proposals also are
designed to limit the distribution and consumption of marijuana to persons over
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21 years of age within the State of Colorado” (Finlaw and Brohl 2013). On May
28, 2013, Governor Hickenlooper signed numerous bills into law—many related to
his task force’s recommendations—including bills that changed sentencing for drug
crimes, defined a “drug-endangered child” with respect to negligence and abuse,
updated penalties for driving under the influence of alcohol or drugs, and levied
taxes on retail marijuana (Colorado 2013). On January 1, 2014, approximately
one year after Colorado legalized recreational marijuana through Amendment 64,
Colorado’s first retail marijuana stores opened.

While Amendment 64 heralded a new degree of cannabis legality in Colorado,
the amendment and later legislative action placed considerable (legal and crimi-
nal) restrictions on marijuana purchases, sales, possession, consumption, and cul-
tivation. Amendment 64 prohibited consumption “that is conducted openly and
publicly” and restricted possession and transactions to individuals of at least 21
years-of-age (Colorado 2012b). Additionally, Colorado law restricts purchases to
1 ounce for Colorado residents1, and recreational marijuana consumers must pur-
chase marijuana from licensed marijuana retail stores. Colorado law also forbids
driving under the influence of marijuana. Consequences for breaking these laws
range from petty offenses, to misdemeanors and felonies—severity generally in-
creasing with volume of marijuana—and punishments can include incarceration
and/or fines (NORML 2018; Denver 2018).

2.3 Model

To motivate and illustrate some of the complexities of cannabis legalization, I now
set up a model.

I model the decisions and interactions in this setting using two separate and
disjoint groups—(1) consumers and (2) police officers. The members of each group
take governance institutions as given (i.e., they are takers of the legal status of
various substances, goods, and behaviors). I model police officers at the individual-
officer level, and I model aggregate (or representative) drug consumption. I assume
the actors maximize their own utilities (maximizing expected utility when facing
uncertainty over outcomes). Using this model, I show how institutional changes
lead to some clear implications and to some ambiguous changes that depend upon
the incentives that members of each group face.

2.3.1 (Potential) Drug consumers

Let us first consider a simple model of drug consumption. In this model, the rep-
resentative consumer maximizes her expected utility from the consumption of two
different, illicit drugs by choosing the optimal quantity of each drug.2 From con-

1Before June 2016, Colorado limited residents of other states to purchasing 0.25 ounces (7
grams). Since June 2016, non-residents and residents both can purchase 1 ounce (Pot Guide 2018).

2To draw insights from the general equilibrium and strategic nature of legalization, I ignore price
and income effects in this model.
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suming quantities x1 and x2 of the two drugs, the consumer derives utility U(x1, x2).
However, for each unit of consumption of each drug (xi), the consumer faces some
probability of arrest (πi) and punishment (Γi). Thus, the consumer’s utility maxi-
mization takes the form{

x∗1, x∗2
}

= arg max
x1, x2

U(x1, x2) − π1γ1x1 − π2γ2x2 (2.1)

with first-order conditions

U1 − π1Γ1 = 0 (2.2)
U2 − π2Γ2 = 0 (2.3)

where Ui denotes the marginal utility of consumption for drug i.3 These first-order
conditions illustrate the tradeoff at the heart of the consumer’s problem—balancing
the benefit of consumption with its expected punishment—and are consistent with
the seminal work in Becker 1968.4

2.3.2 Police officers

Now let us turn to a model of policing. Police officers (officers henceforth) maximize
their on-job utilities by choosing the levels of effort they exert while enforcing
various types of crime. Officers receive utility from apprehending offenders and
implicitly bear opportunity costs from the allocation of their effort.

Specifically, an individual officer allocates effort ei to enforcing crime type i from
her total allocation of effort E. For simplicity, I consider only two types of crime.
Based upon her effort (e.g., hours) enforcing crime i (ei) and the amount of crime i
(xi), the officer apprehends ni(ei)xi) people who committed crime i. I assume that
ni is increasing in effort—the officer will apprehend more people will more effort,
holding the size of population of offenders constant—and ni is concave with respect
to effort (diminishing returns to effort).

In this model, an officer may receive different amounts of utility for appre-
hending offenders of different crimes. I am agnostic to the specific origin of this
reward—it may come from officers’ preferences, social norms, promotion structures,
and/or legal institutions. However, the basic motivation comes from recognizing
that both society and municipal administrators likely agree that catching murderers
matters more than catching jaywalkers. To integrate this reward into the model, I
scale the number of individuals of crime type i apprehended by an officer by γi.5

3The second-order conditions are: Uii < 0 for each i and U11U22 − U12U21 > 0.
4It is also consistent with Bentham’s reasoning on punishment: “Montesquieu perceived the

necessity of a proportion between offenses and punishments. Beccaria insists upon its importance.
But they rather recommend than explain it; they do not tell in what the proportion consists. Let us
endeavor to supply this defect, and to give the principal rules of this moral arithmetic. First rule.
The evil of the punishment must be made to exceed the advantage of the offense.” (Bentham 1840, p.
100)

5Another way to think about the parameter γi: γi gives the degree of criminalization for action i.
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Putting these pieces together, the officer chooses optimal levels of effort{
e∗1, e∗2

}
= arg max

e1, e2
γ1n1(e1)x1 + γ2n2(e2)x2 such that e1 + e2 = E (2.4)

2.3.3 Strategic behavior

I assume that the police officers understand that their enforcement decisions (effort)
affects the levels of drug consumption chosen by the consumers. I also assume that
the consumers do not consider the effect of their choices on the officers’ behavior.

If there are κ police officers, then the total number of individuals apprehended
for offense i is κni(ei)xi. If apprehension is equally random for each purchase/consumer,
then the probability of apprehension πi can be written as

πi =
κni(ei)xi

xi
= κni(ei) (2.5)

Consumer responses

Because officers internalize the effect of their effort on consumers’ decisions, I link
the two models by substituting the probabilities (πi) given in (2.5) into the first-
order conditions shown in (2.2) and (2.3). This substitution results in the necessary
conditions

U1(x1, x2) − κn1(e1)Γ1 = 0 (2.6)
U2(x1, x2) − κn2(e2)Γ2 = 0 (2.7)

Where e1 and e2 are the officer’s levels of effort, which I assume are exogenous
from the consumer’s perspective. Applying the implicit function theorem to the
first-order conditions in (2.6) and (2.7) yields6

∂xi

∂ei
= A U j jκΓin′i Sign: (+)(−)(+)(+)(+) = (−) (2.8)

∂xi

∂e j
= −A Ui jκΓ jn′j Sign: −(+)(Ui j)(+)(+)(+) = −sign(Ui j) (2.9)

∂xi

∂Γi
= A U j jκni Sign: (+)(−)(+)(+) = (−) (2.10)

∂xi

∂Γ j
= −A Ui jκn j Sign: −(+)(Ui j)(+)(+) = −sign(Ui j) (2.11)

∂xi

∂κ
= A

[
U j jniΓi − Ui jn jΓ j

]
Sign: (−)(+)(+) − (+)(Ui j)(+)(+) = (−) − sign(Ui j) (2.12)

where A = U11U22 − U12U21, the determinant of the consumer’s Hessian (and
A > 0). Unsurprisingly, (2.8) and (2.10) suggest that as policing effort or pun-
ishment severity decrease for drug i, consumption of good i will increase. More

6See the consumer comparative statics section in the appendix for the full derivation.
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interestingly—particularly for this paper’s context—are the indeterminate signs for
the “cross” effects in (2.9) and (2.11). If the two drugs are compliments—meaning
Ui j > 0—then as policing effort or punishment severity decrease for drug j, con-
sumption of drug i increases (i , j). The result flips when the two drugs are
substitutes (Ui j < 0) rather than complements.7

Officer optimization

Because an officer understands that her effort allocation affects consumers’ behav-
iors, based up (2.4) the officer’s constrained maximization problem takes the form

L = γ1 n1(e1) x1(e1, e2) + γ2 n2(e2) x2(e1, e2) + λ (E − e1 − e2) (2.13)

which has the first-order conditions

Le1=
∂L

∂e1
= γ1

(
n′1 x1 + n1

∂x1

∂e1

)
+ γ2 n2

∂x2

∂e1
− λ = 0 (2.14)

Le2=
∂L

∂e2
= γ1 n1

∂x1

∂e2
+ γ2

(
n′2 x2 + n2

∂x2

∂e2

)
− λ = 0 (2.15)

Lλ=
∂L

∂λ
= E − e1 − e2 = 0 (2.16)

2.3.4 Comparative statics

Applying the implicit function theorem to the officer’s maximization8 yields the
comparative statics

∂ei

∂γi
= B

{
n′i xi + n′iniA U j jκΓi + niA Ui jκΓ jn′j

}
(2.17)

= (+)
{
(+) + (−) + sign(Ui j)

}
∂ei

∂γ j
= B

{
−n jA U jiκΓin′i − n′jx j − n′jn jA UiiκΓ j

}
(2.18)

= (+)
{
− sign(U ji) − (+) − (−)

}
∂ei

∂Γi
= B ×

(
A κn′i

)
×

(
γiniU j j − γ jn jU ji

)
(2.19)

= (+) × (+) ×
[
(−) − sign(U ji)

]
< 0 if U ji ≥ 0
< 0 if γ jn jU ji < γiniU j j and U ji < 0
> 0 if γ jn jU ji > γiniU j j and U ji < 0

7The sign in (2.12) is technically (+)
[
(−)(+)(+) − (+)(Ui j)(+)(+)

]
, which simplifies to the formula-

tion given in (2.12).
8Described in detail in appendix section officer optimization.
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∂ei

∂Γ j
= B ×

(
A κn′j

)
×

(
γiniUi j − γ jn jUii

)
(2.20)

= (+) × (+) ×
[
sign(Ui j) − (−)

]
> 0 if Ui j ≥ 0

> 0 if
∣∣∣γiniUi j

∣∣∣ < ∣∣∣γ jn jU j j

∣∣∣ and Ui j < 0

< 0 if
∣∣∣γiniUi j

∣∣∣ > ∣∣∣γ jn jU j j

∣∣∣ and Ui j < 0

where B denotes the (positive) determinant of the officer’s first-order conditions
(2.14–2.16) with respect to the exogenous parameters

{
γi, Γi, κ

}
.

As (2.17–2.20) highlight, the effect of decriminalization (reducing Γi) on polic-
ing effort is ambiguous—depending both upon the degree of substitution or comple-
mentarity of the two drugs (Ui j) and the incentives officers receive for enforcing the
two offenses (γ1 and γ2). When the two drugs are compliments, the comparative
statics simplify, and a marginal reduction in the penalty for drug i leads to an unam-
biguous increase in policing effort for enforcement of drug i and an unambiguous
decrease in policing effort for drug j.

Accordingly, the effect of decriminalization of drug i on the number of individ-
uals caught by the police for offense i is also ambiguous. For instance, under the
simpler case of complements (U12 > 0), changing the criminal penalty for drug 1
(Γ1) changes the amount of consumption of drug 1 by

dx1(e1, e2)
dΓ1

=
dx1

de1

de1

dΓ1
+

dx1

de2

de2

dΓ1
(2.21)

= (−)(−) + (−)(+) = (?) (2.22)

while the officer’s effort-to-citation function changes as

dn1(e1)
dΓ1

= n′1(e1)
de1

dΓ1
< 0 (2.23)

Even upon assuming the structure of the complementarity of the two drugs, the
effect of decriminalization is still ambiguous.

Rather than generating testable hypotheses, the main takeaway from this ex-
ercise is more abstract. This fairly simple and general model does not guaran-
tee that a reduction in the criminal status of one drug will necessarily reduce
the number of offenses enforced by police officers for the decriminalized drug.
There is also no guarantee for the effects on the second drug, whose legal status
does not directly change. These ambiguous results highlight several complexi-
ties of decriminalization/legalization. First, police officers’ incentives (γi) matter—
decriminalizing drugs without changing officers’ incentives may induce an increase
in officer-recorded offenses. Second, the relationships between the decriminalized
and non-decriminalized drugs are important—substitutes vs. complements flips the
sign of several comparative statics. Third, officers allot an approximately fixed
amount of effort (or work a fixed number of hours)—meaning a reduction in in-
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centives for one offense likely means an increase in effort toward another offense.9

Finally, changes in the number of officers can have important effects—an impor-
tant point, as many legalization/decriminalization regimes include increases in the
number of police officers. Taken together, these dimensions suggest that scenarios
potentially exist in which legalization/decriminalization of one drug may in fact
increase offenses for the decriminalized drug and/or other drugs.

2.4 Data

The empirics in this paper rely upon publicly available data extract files from the
National Incident-Based Reporting System (NIBRS) hosted by the National Archive
of Criminal Justice Data (NACJD) the Inter-university Consortium for Political and
Social Research (ICPSR).10 NACJD publishes annual extracts of the full dataset,
providing data reported police incidents at four levels: (1) incident, (2) victim, (3)
offender, or (4) arrestee. This paper uses the incident-level extracts for the years
2000–2015.11

NIBRS is part of a larger program (the Uniform Crime Reporting Program or
UCR) administered by the U.S. Federal Bureau of Investigation (FBI). The NI-
BRS data constitute “an incident-based reporting system for crimes known to the
police” (NACJD 2017). Consequently, each crime incident that occurs within a law-
enforcement jurisdiction that reports to the UCR results in a well-documented data
point in the NIBRS dataset. Of particular relevance for this paper: NIBRS records
the date, types of offenses, types of drugs involved, and the offender’s attributes for
each incident. While the NIBRS data do not constitute a representative sample of
crime in the United States (NACJD 2017), they include the city of interest for this
paper (Denver, Colorado) and many other potential control cities.

2.5 Empirical strategy

As outlined in the introduction, the goal of this paper is to examine the empirical
evidence whether Colorado’s and Denver’s paths toward recreational cannabis le-
galization indeed reduced the criminalization of cannabis and non-cannabis drug
offenses in Denver.

The city-level analysis of the effect of cannabis legalization boils down to a com-
parison of a single treated city—Denver, Colorado—to a large number of untreated
cities of similar sizes to Denver. Figure 2.2 illustrates such a comparison, comparing
the number of drug offenses recorded each week for Denver (in black) to other
cities.12 Figures 2.3 and 2.4 illustrate the same time series but split the offenses into

9Admittedly, this result is partially built into the model, rather than a result from the model.
10Available through the ICPSR website.
11At the time of writing this paper (July 2018), the 2015 extract was the most recent extract.
12Figure 2.2 compares Denver to 37 other cities. Denver ranks eighth in drug offenses per week

during the pre-legalization period. I therefore take the 7 cities ranked above Denver and the 30
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cannabis-related offenses (Fig. 2.3) and non-cannabis-related offenses (Fig. 2.4).
The time series of weekly, city-level drug-related offenses in Figures 2.2–2.4 sug-
gest that all types of drug offenses—both cannabis and non-cannabis offenses—
increased shortly after Colorado legalized recreational cannabis—particularly after
the medley of cannabis-related state-legislature bills in May 2013.

To formally test whether Colorado’s legalization accompanied increases in drug
offenses in Denver, I implement a (generalized) synthetic-controls estimator (Abadie
and Gardeazabal 2003; Abadie, Diamond, and Hainmueller 2010, 2011, 2015).
In addition, I provide estimates using a more traditional difference-in-differences
(DiD13) framework (Card 1990; Bertrand, Duflo, and Mullainathan 2003; Imbens
and Wooldridge 2009).

2.5.1 Synthetic controls

This setting—comparing the time series of a single treated city (Denver) to the
time-series of many untreated cities—provides a quintessential environment for
synthetic-control methods (Abadie and Gardeazabal 2003; Abadie, Diamond, and
Hainmueller 2010, 2011, 2015; Xu 2017). In fact, Abadie, Diamond, and Hain-
mueller motivate their canonical synthetic-control study as “based on the compar-
ison of outcomes between units representing the case of interest, defined by the
occurrence of a specific event or intervention that is the object of the study, and oth-
erwise similar but unaffected units. In this design, comparison units are intended
to reproduce the counterfactual of the case of interest in the absence of the event
or intervention under scrutiny.” In the current paper’s case, Denver represents the
“case of interest”—potentially affected by Colorado’s legalization of recreational
cannabis—and a host of other major American cities (in states without legalized
recreational cannabis) constitute the “unaffected units.”

While the pre-legalization trends in Figures 2.2–2.4 appear parallel—bearing evi-
dence toward the parallel-trends identifying assumption in a difference-in-differences
framework—I first implement a generalized synthetic control empirical strategy, as
given by Xu, before turning turning to the more traditional difference-in-differences
framework. The strength of generalized synthetic control methods in this setting
is that by employing (linear) interactive fixed effects, one can better control for
potential unobserved, time-varying heterogeneity across cities ((Pesaran 2006; Bai
2009; Woolridge 2010; Kim and Oka 2014; Gobillon and Magnac 2016; Shi and Lee
2017; Xu 2017)). The linear interactive fixed effects take the form of “unit-specific
intercepts interacted with time-varying coefficients” (latent factors and factor load-
ings) (Xu 2017). Gobillon and Magnac argue that the setting of regional policy
analysis is particularly important to consider “more elaborate procedures,” such
as generalized synthetic controls, due to the greater potential for cross-sectional

cities ranked below Denver. The analysis is robust to how I choose this set of cities. Figure 2.2 omits
other cities in Colorado because they are also affected by Colorado’s legalization and thus offer a
poor control for Denver.

13Also known as double difference (DD).
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dependence in regional policies—relationships due to both spatial proximity and
economic proximity.

The generalized synthetic-control (GSC) framework assumes a functional form
of

yit = τit 1
{
t ∈ Legalization

}
it + λ′i ft + εit (2.24)

where i denotes an individual city, t denotes a specific time period (week of sample),
and 1{foo} denotes an indicator variable that takes a value of one when foo is true.
Consequently, yit gives the number of incidents recorded in city i during week-of-
sample t, and τit gives the heterogeneous treatment of effect of cannabis legalization
for city i at period t—in terms of the number of additional incidents recorded as a
result of legalization. As in (Xu 2017), the term ft =

[
f1t, f2t, frt

]′ gives an (r × 1)
vector of unobserved common factors, and λi = [λi1, λi2, λir]′ denotes the (r × 1)
vector of factor loadings for city i.14

The generalized synthetic-control estimator for the treatment effect of treated
city i in time t is the difference between the observed outcome, i.e., yit(1), and the
synthetic control for city i in period t, i.e., ŷit(0). The GSC estimate results from (1)
estimating (2.24) on all control units, (2) estimating the factor loadings for each
the treatment by minimizing mean square error in the pre-treatment period(s), and
(3) using the estimates obtained in (1) and (2) to calculate ŷit(0) (Xu 2017). The
estimated treatment effect for (treated) city i in period t is thus τ̂it = yit(1) − ŷit(0).

2.5.2 Difference in differences

Now consider the simpler—and more restrictive—difference-in-differences frame-
work. The corresponding difference-in-differences estimating equation is

yit = τ1
{
t ∈ Pre-Legalization

}
t × 1{i = Denver}i + γi + δt + εit (2.25)

where, as above, i denotes an individual city, t denotes a specific time period (week
of sample), and 1{foo} denotes an indicator variable that takes a value of one when
foo is true. The outcome variable yit records the number of police-involved incidents
in city i during week-of-sample t, and τ now represents the average treatment
effect of cannabis legalization—the number of additional offenses recorded due to
cannabis legalization.15

The key identifying assumption underlying a difference-in-differences design is
the common trends assumption: in the absence of treatment, the control units and
treatment units would have remained on similar trajectories (Angrist and Pischke
2009). The pre-cannabis-legalization trends in Figures 2.2–2.4 suggest that Denver
and the 37 non-legalization cities observed similar trends prior to cannabis legaliza-
tion in Colorado—lending credibility toward the assumption that Denver and these

14Note that this general definition nests the more common individual-and-time fixed effects setting
wherein f1t = 1 and λi2 = 1 (and r = 2).

15Note that the city and week-of-sample fixed effects γi and δt obviate traditional indicators for
“treatment unit” and “post-period,” respectively.
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cities would have remained on comparable trajectories in the absence of Colorado’s
legalization of recreational cannabis in November of 2012.

In order to more formally the pre-treatment trends, I estimate variants of the
equation

yit = β1t + β2t × 1{i = Denver} + γi + δt + εit (2.26)

for months prior to Colorado’s cannabis legalization—where t denotes a time
trend. Thus, β1 gives the time trend pooled across all observations, and β2 denotes
any differential time trend in Denver. Consequently, I test whether pre-cannabis-
legalization trends differed significantly between Denver and the 37 comparison
cities by testing whether β2 differs significantly from zero.

Table 2.1 presents the ordinary least squares (OLS) estimates for β1 and β2 in
equation 2.26. All four specifications suggest that, on average, the number of drug
incidents was trending down in Denver and its comparison cities. In column (1),
I estimate (2.26) with an intercept and without any fixed effects—providing raw
trends that do not match the difference-in-differences empirical strategy. The results
in column (1) indicate that prior to legalization, Denver was on a very similar trend
to the comparison cities—though β2 is statistically significant in column (1), the
difference is less than 1 percent of the pooled trend (β2).16 Furthermore, if Denver’s
pre-legalization trend was in fact decreasing more steeply than the comparison
cities, then the difference-in-differences estimator is biased away from finding that
Colorado’s legalization of cannabis increased the number of drug incidents in Denver.
Once I add city fixed effects (column 2) and time fixed effects (columns 3 and 4),
there is no significant difference in trends between Denver and the comparison
cities.17

Finally, Figure 2.5 illustrates an event study wherein I estimate a “treatment
effect” for each month of the sample—i.e., the difference in the number of ar-
rests between Denver and the comparison cities, conditional on city, week-of-year,
and year fixed effects. The month preceding Colorado’s legalization recreational
cannabis (October 2012) is the reference month. Specifically, Figure 2.5 depicts the
point estimates and standard errors for the θk in the equation

yit =

41∑
k=−76
k,−1

θk1
{
t ∈ monthk

}
× 1{i ∈ Denver} + γi + δt + εit (2.27)

where i indexes a city, t references week of sample, γi denotes city fixed effects, and
δt abbreviates both the year fixed effect and the week-of-year fixed effect.

Figure 2.5 bears further evidence that prior to legalization, Denver and the
comparison cities observed similar trends in the the number of drug-related police
incidents—the point estimates are near zero for many of the months preceding
legalization. However, after legalization (line A in Figure 2.5), the the point esti-
mates jump steeply away from zero—consistent with the increases in drug-related

16This trend is also quite small relative the the pre-treatment mean of the dependent variable.
17Keeping in mind that failure to reject does not prove null.
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incidents depicted in Figures Figures 2.2–2.4. Thus, Figure 2.5 common trends
assumption in the difference-in-differences design—and also suggests Colorado’s
legalization increased .

The common trends depicted in Figures 2.2–2.4, the null results for a difference
in trends in Table 2.118, and the common-trend evidence from Figure 2.5’s event
study jointly suggest that the common trends assumption seems quite plausible in
this setting.

2.6 Results

Having outlined the empirical strategies and the evidence supporting their iden-
tifying assumptions, I now review examine the results of estimating the effect of
legalized recreational cannabis on drug-related police incidents.

2.6.1 Synthetic controls

Table 2.2 contains the (generalized) synthetic-control estimates for the average
treatment effect (on the treated)—estimating the effect of recreational cannabis
legalization on the number of drug-involved police incidents per week as give in
equation 2.24. Across three separate specifications, the estimated effect is quite
stable and precise with point estimates ranging from 35 to 40 (incidents per week)
and standards errors of approximately 2.3.

Each column in Table 2.2 represents a different (generalized) synthetic-control
specification. Column (1) applies a more traditional synthetic control specification,
omitting any time-varying factors and including only fixed effects—for city and
for week of sample. Column (2) includes fixed effects for both city and week-of-
sample and four other common factors19 Finally, column (3) removes column (2)’s
insistence on individual and temporal fixed effects, allowing the model to fully
and flexibly select up to five factors (again through cross validation). In column
(3)’s specification, the cross-validated optimal number of common factors is two.
Thus, while I allow the generalized synthetic control specifications to vary, the
resulting estimates of the effect of cannabis legalization on Denver’s drug-related
crime instance remain constant. Using point estimates from column (1) of Table 2.2,
the causal interpretation of this effect is: Colorado’s legalization of recreational
cannabis, on average, increased number of drug-involved police incidents in Denver
by 41 incidents each week.20

Figures 2.6–2.8 illustrate the goodness of fit for Denver’s synthetic control in
the pre-period (left of the vertical light grey line) and also simulate what drug-

18And bearing in mind that all of the difference-in-differences specifications in this paper use fixed
effects.

19I choose the number of common factors through cross validation—minimizing mean square
prediction error (MSPE). See Xu 2017 for more detail on cross validation and choosing the optimal
number of factors.

20The 95% confidence interval is [36.3, 45.1].
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related police incidents may have looked like had Colorado not legalized recre-
ational cannabis in 2012 (the empty pink circles to the right of the vertical line).
The pre-legalization synthetic control for Denver tends to match reality quite well—
in all three of the specifications—with a few exceptions approximately two years
prior to legalization. As indicated by the large and significant estimated effect of le-
galization on drug incidents, the counterfactuals provided by the synthetic controls
in Figures 2.6–2.8 suggest that the number of drug-related police incidents would
have been much smaller in nearly every week after November 2012 had Colorado
not legalized recreational cannabis.

In Figures 2.6–2.8, post-legalization (reality) Denver appears move farther away
from synthetic-control Denver as time passes—suggesting the treatment (legaliza-
tion) effect may be increasing with time. Figure 2.9 more clearly presents this trend
by plotting each week’s estimated treatment effect on the y axis (the difference
between reality and the synthetic control in each week) separately for the three
synthetic-control specifications. I then fit a locally weighted regression (loess) to
the estimated treatment effects, resetting the loess at the time of legalization. The
depicted point estimates and the slope of the loess lines are all consistent with
the effect of legalization on the number of drug-related incidents increasing with
time—though the slope appears to have leveled off recently.21

In summary, three separate specifications of generalized synthetic-control meth-
ods estimate that Colorado’s legalization of cannabis increased the number of drug-
related police incidents by approximately 40 incidents each week—on a base of
approximately 40 incidents. The GSC estimator appears to match Denver’s actual
path in the pre-legalization period before sharply diverging in the weeks following
Colorado’s legalization of recreational cannabis.

2.6.2 Difference in differences

Table 2.3 presents the difference-in-differences results from estimating equation 2.25.
Each column estimates the same equation with a different outcome variable (mea-
sured at the city-week level): column (1) uses the total number of drug-related
police incidents; column (2) uses the natural log of the total number of drug-related
incidents; column (3) restricts the count to cannabis-related incidents; and column
(4) considers only non-cannabis related incidents.

Each of the four columns in Table 2.3 supports the synthetic-control results
that Colorado’s recreational-cannabis legalization significantly and substantially
increased drug-related police incidents in Denver.22 Column (1) estimates that
recreational-cannabis legalization increased the number of drug-related police events
by 40.57 [27.39, 53.77] incidents each week. The point estimate in column (2) is
approximately 0.90, which implies an increase of approximately 146 percent [79%,
213%]23.

21This leveling off may be an artifact of the last few weeks of the dataset.
22Table B.1 applies week-of-sample fixed effects—rather than week-of-year and year fixed effects—

and the point estimates (and standard errors) are essentially unchanged.
23Because the treatment variable is an indicator, the percentage-based interpretation of the log-
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Columns (3) and (4) of Table 2.3 decompose the number of drug-related in-
cidents by incidents involving cannabis (column 3) and drug incidents that did
not involve cannabis (column 4). The results indicate that legalizing recreational
cannabis significantly and substantially increased both the number of cannabis-
related police incidents (by 12.01 [4.89, 19.13] incidents each week, on a base
of 20.26) and the number of non-cannabis drug-related offenses (by 15.31 [10.57,
20.06] incidents each week, on a base of 16.03). While the magnitudes of both
effects are quite large, the magnitude of the increase in non-cannabis drug-related
incidents is particularly stark, as the estimated 15-incident increase is on a base of
16 incidents.

Finally, the estimated average treatment effect (from the differences-in-differences
design) in column (1) of Table 2.3 (40.57) is very similar to the synthetic-control
based estimate in column (1) of Table 2.2 (40.68). This results makes sense, as
the synthetic control specification in column (1) of Table 2.2 uses very similar fixed
effects to the difference-in-differences estimator in column (1) of Table 2.3—i.e., ex-
cluding any common factors and covariates. That said, the other synthetic-control
estimates in Table 2.2 do not differ substantially from the difference-in-differences
results.

2.7 Discussion and conclusions

First, it is important to frame this paper’s results. This paper exclusively considers
the effects of recreational cannabis legalization on one type of outcome (the number
of drug-related police incidents) in one city (Denver, Colorado). This paper finds
significant evidence that Colorado’s legalization of recreational cannabis increased
the number of drug-related police incidents. However, because this paper considers
exactly one city affected by legalization, these results do not necessarily apply to all
localities considering legalization. In different cities, under different legal/policing
strategies, or with different histories/institutions, recreational cannabis legalization
may have different effects on criminalization and drug-related incidents. The results
do, however, suggest that the common claim that cannabis legalization will reduce
drug-related criminalization is not true in all cases. In addition, because the goal
of this paper is to test the veracity of this specific criminal/social-justice hypothesis,
I do not consider other outcome variables. Consequently, the results in this paper
should not be taken as representative of the aggregate or distributional changes
in individual or social welfare following Colorado’s legalization of recreational
cannabis. Finally, it is also worth considering the fact that the observed trends may
be due, in part, to a transition between very different equilibria: Colorado was
among the first states to legalize recreational marijuana, and moving from a regime
of (official) prohibition to legalization likely entails periods of disequilibrium. Thus,
one should resist extrapolating too far beyond the case of recreational-cannabis
legalization in Colorado and its effects on drug-related police incidents in Denver.

linear specification stems from exp{τ̂} − 1, where τ̂ is the coefficient in column (2) of Table 2.3. I
calculate the standard error using the Delta Method.
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Caveats made, the empirical evidence in this paper suggests that Colorado’s
legalization of recreational cannabis causally increased the number of drug-related
police incidents. Put simply, rather than decreasing criminalization, cannabis legal-
ization in this setting increased drug-related police incidents. Further, the increase
in drug-related offenses came from both increases in cannabis-involving incidents—
which were governed by new laws and citations that developed following Col-
oradans passed Amendment 64—and increases in non-cannabis drug incidents.
While these results may at first blush seem surprising, they are consistent with a
model in which police officers respond to (1) citizens’ drug-consumption choices
and (2) incentives set by society/local government. The model laid out at the
beginning of this paper suggested legalization may increase or decrease incidents
involving the legalized and non-legalized drugs. The empirical results in this paper
confirm the possibility that legalization may increase criminalization/police inci-
dents for legalized and non-legalized drugs. Future work will likely uncover cases
in which legalization has differing effects. However, regardless of future outcomes,
this paper demonstrates an important lesson for policymakers:24 legalization has
the potential to increase police-involving incidents—both for the legalized drug and
for other drugs. This lesson has important implications for evaluating the effects
and equity of policies ranging legalization to criminal prosecution to policing—and
is particularly salient today, when inequality, policing, and drug policy weigh heavy
in the public conscience.

24Including elected officials and voters.
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2.8 Figures

Figure 2.1: Colorado legalization timeline: Important events for Colorado’s
implementation of recreational cannabis legalization

Legal Medicinal Legal Recreational

2009 2010 2011 2012 2013 2014 2015 2016 2017

Amendment 64: Legalization

Task force bills

Retail stores open

Notes: Coloradans passed Amendment 64 on November 6, 2012, authorizing the legalization of
recreation cannabis (with 55% support). On May 28, 2013, Colorado Governor John Hickenlooper
signed into law several state-legislature bills that regulate cannabis in Colorado. Recreational
cannabis stores open on January 1, 2014.
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Figure 2.2: All drug-related incidents (NIBRS): Weekly by city, 2007–2016
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Notes: The lines match the events described in Figure 2.1. Specifically: A denotes Colorado’s legalization of recreation cannabis via Amendment 64
(November 6, 2012). B denotes Governor Hickenlooper signing into law several state-legislature bills that regulate cannabis in Colorado (May 28,
2013). C denotes the opening of recreational cannabis stores in January 1, 2014. Source: NACJD
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Figure 2.3: Cannabis-related incidents (NIBRS): Weekly by city, 2007–2016
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Notes: The lines match the events described in Figure 2.1. Specifically: A denotes Colorado’s legalization of recreation cannabis via Amendment 64
(November 6, 2012). B denotes Governor Hickenlooper signing into law several state-legislature bills that regulate cannabis in Colorado (May 28,
2013). C denotes the opening of recreational cannabis stores in January 1, 2014. Source: NACJD
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Figure 2.4: Non-cannabis drug-related incidents (NIBRS): Weekly by city, 2007–2016
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Notes: The lines match the events described in Figure 2.1. Specifically: A denotes Colorado’s legalization of recreation cannabis via Amendment 64
(November 6, 2012). B denotes Governor Hickenlooper signing into law several state-legislature bills that regulate cannabis in Colorado (May 28,
2013). C denotes the opening of recreational cannabis stores in January 1, 2014. Source: NACJD
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Figure 2.5: Event study: Difference in drug-involving incidents between Denver and comparison cities
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Notes: The lines match the events described in Figure 2.1. Specifically: A denotes Colorado’s legalization of recreation cannabis via Amendment 64
(November 6, 2012). B denotes Governor Hickenlooper signing into law several state-legislature bills that regulate cannabis in Colorado (May 28,
2013). C denotes the opening of recreational cannabis stores in January 1, 2014. The event-study regression includes city, week-of-year, and year fixed
effects. I cluster the errors at the city-by-year level. Source: NACJD
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Figure 2.6: Synthetic controls, specification 1: Comparing Denver in reality to synthetic-control Denver
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Notes: This figure compares the observed weekly drug-related incidents in Denver (black dots) with the synthetic control for Denver (pink, empty
circles), composed of 24 comparison cities. Specification 1 refers to the synthetic-control specification in column (1) of Table 2.2, which uses city and
week-of-sample fixed effects, omitting any further common factors.
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Figure 2.7: Synthetic controls, specification 2: Comparing Denver in reality to synthetic-control Denver
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Notes: This figure compares the observed weekly drug-related incidents in Denver (black dots) with the synthetic control for Denver (pink, empty
circles), composed of 24 comparison cities. Specification 2 refers to the synthetic-control specification in column (2) of Table 2.2, which uses city and
week-of-sample fixed effects and four common factors.
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Figure 2.8: Synthetic controls, specification 3: Comparing Denver in reality to synthetic-control Denver
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Notes: This figure compares the observed weekly drug-related incidents in Denver (black dots) with the synthetic control for Denver (pink, empty
circles), composed of 24 comparison cities. Specification 3 refers to the synthetic-control specification in column (3) of Table 2.2, which uses two
common factors (not necessarily using fixed effects).

65



www.manaraa.com

Figure 2.9: Synthetic-control treatment effects: Comparing estimated treatment effects across the three specifications
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Notes: This figure compares the estimated treatment effect in each week from the three synthetic-control specifications (using the specification
numbers defined in Table 2.2). The dashes depict the loess-smoothed lines—providing local averages of the treatment effects.
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2.9 Tables

Table 2.1: Parallel pre-trends: Testing pre-legalization, linear trends with OLS

Dependent variable: Weekly drug incidents, (NIBRS)

(1) (2) (3) (4)

Time trend −0.6803 −0.6640∗

(1.26305) (0.354)

Time trend −0.0068∗∗∗ −0.2849 −0.3154 −0.3166
× Denver (0.00135) (0.937) (0.847) (0.869)

Intercept T F F F
City FE F T T T
Year FE F T F F
Week FE F F T F
Year-Week FE F F F T
N 7,598 7,598 7,598 7,598

Notes: Each column denotes a separate regression. The observational unit is city i in month of
sample t. Errors are clustered within a city in a year. The mean of the dependent variable (the
number police-involving drug incidents within a city in a week) is 41.62 in the pre period.
Significance levels: *10%, **5%, ***1%.
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Table 2.2: Effect of cannabis legalization on drug-related offenses:
Synthetic controls results

Dependent variable: Weekly drug incidents (NIBRS)

(1) (2) (3)

Legalization 40.6833∗∗∗ 35.4370∗∗∗ 35.3196∗∗∗

ATT (2.26) (2.62) (2.01)

Number of factors 0 4 2
City FE T T F
Week-of-sample FE T T F
N 11,723 11,723 11,723

Notes: The point estimates denote the average treatment effect on the treated. Standard errors
result from parametric bootstrapping with n = 1,000. Each column denotes a separate
synthetic-control estimation. The specification in (1) includes city and week-of-sample fixed
effects—and excludes any other common factors. The results in (2) include both sets of fixed
effects and four other common factors. The specification in (3) does not enforce the fixed effects
(which are nested in common factors); (3) uses two common factors. I determined the ‘optimal’
number of common factors in (2) and (3) through cross validation (see Xu 2017). Significance
levels: *10%, **5%, ***1%.
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Table 2.3: Effect of cannabis legalization on drug-related offenses: Difference-in-differences results

Dependent variable

(1) (2) (3) (4)
N. incidents Log(N. incidents) N. cannabis incidents N. non-cannabis incidents

Legalization 40.5779∗∗∗ 0.8994∗∗∗ 12.0104∗∗∗ 15.3135∗∗∗

indicator (6.73) (0.14) (3.63) (2.42)

City FE T T T T
Year FE T T T T
Week FE T T T T
N 11,723 11,723 11,723 11,723

Notes: Each column denotes a separate regression with a different dependent variable. The observational unit is city i in week of sample t. Errors are
clustered within a city in a year. The mean number of drug-related police incidents before Colorado’s legalization was 41.62 (20.26 cannabis-related
offenses and 16.03 non-cannabis related offenses). Significance levels: *10%, **5%, ***1%.
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3 | Do aerially applied pesticides af-
fect local air quality? Empirical
evidence from California’s San
Joaquin Valley

Chapter abstract: Many policymakers, public-health advocates, and citizen
groups question whether current pesticide regulations properly equate the
marginal social costs of pesticide applications to their marginal social benefits—
with particular concern for negative health effects stemming from pesticide
exposure. Additionally, recent research and policies in public health, epidemi-
ology, and economics emphasize how fine particulate matter (PM2.5) concen-
trations harm humans through increased mortality, morbidity, mental health
issues, and a host of socioeconomic outcomes. This paper presents the first em-
pirical evidence that aerially applied pesticides increase local PM2.5 concentra-
tions. To causally estimate this effect, I combine the universe of aerial pesticide
applications in the five southern counties of California’s San Joaquin Valley
(1.8M reports) with the U.S. EPA’s PM2.5 monitoring network—exploiting (1)
spatiotemporal variation in aerial pesticide applications and (2) variation in
local wind patterns. I find significant evidence that (upwind) aerial pesticide
applications within 1.5km increase local PM2.5 concentrations. The magni-
tudes of the point estimates suggest that the top decile of aerial applications
may sufficiently increase local PM2.5 to warrant concern for human health.

3.1 Introduction

Recent economic, epidemiological, and public health research strengthens the body
of evidence that exposure to high levels of pesticides increases the incidence of
a number of negative health outcomes, e.g., low birthweight, gestational length,
birth abnormalities (Larsen, Gaines, and Deschênes 2017). In addition, a large
body of work demonstrates the effect of exposure to particulate matter (PM) on
mortality (Seaton et al. 1995; Pope III et al. 2002; Guaita et al. 2011; Lu et al.
2015), morbidity (Pope III 1989; Currie and Walker 2011; Laumbach and Kipen
2012), mental health (Graff Zivin and Neidell 2013; Volk et al. 2013), and negative
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social/economic outcomes (Ransom and Pope 1992; Kim, Kabir, and Kabir 2015;
Isen, Rossin-Slater, and Walker 2017).

This paper attempts to provide the first empirical evidence on (1) the extent
to which aerially applied pesticides increase local fine particulate matter (PM2.5)1

concentrations and (2) the degree to which aerial pesticide-induced PM2.5 drifts to
neighboring areas. To carry out this test, I use the universe of aerial pesticide appli-
cations in the five southern counties of California’s San Joaquin Valley from 2000
to 2015, in conjunction with the U.S. Environmental Protection Agency (EPA)’s
PM2.5 monitoring network. The empirical tests use (1) spatiotemporal variation
in aerial pesticide application and (2) variation in wind direction to isolate the
necessary plausibly exogenous variation to evaluate these questions. I find signifi-
cant evidence that aerially applied pesticides increase local PM2.5 concentrations
(reducing local air quality) within 1.5 kilometers of the application. The magnitude
of the effect suggests that the top decile of aerially applied pesticides may increase
local PM2.5 concentrations sufficiently to warrant public health concern.

While many issues relating to pesticides—health effects, use, bans—remain
hotly debated (Pimentel et al. 1992; Tong 2018), federal (e.g., the EPA) and state
(e.g., California’s Department of Pesticide Regulation (DPR)) entities regulate, to
some degree, the types and amounts of pesticides a farmer may apply to her land—
particularly in areas near schools or population centers. Notably, the vast majority
of pesticide-use regulations consider the individual farmer as the relevant actor—
attempting to limit others’ exposures from a farmer’s pesticide application. This
regulatory strategy may be plausibly efficient/optimal if pesticides do not travel
far from their points of application and if neighboring farmers’ applications do
not correlate positively in time. However, if pesticides drift from their points of
application—and if farmers tend to apply pesticides at the same time and in the
same area2—then regulating individual farmers without concern for local, aggre-
gate behavior may miss important dimensions of exposure. In other words, if each
farmer in a highly agricultural area applies pesticides just below an established safe
level, and if each farmer’s pesticides aggregate locally and/or drift slightly down-
wind onto neighboring areas, then these downwind, neighboring areas may be
exposed to levels of pesticide above the established safe level. This paper investi-
gates the extent to which statistical evidence supports these hypotheses.

3.2 Data

The empirics in this apply three separate datasets: (1) fine particulate matter
(PM2.5) monitoring data from the EPA’s network of air-quality monitors, (2) pesticide-
use reports from the California Department of Pesticide Regulation (DPR), and (3)
wind data from NASA’s North American Land Data Assimilation Systems, version 2
(NLDAS-2).

1Fine particulate matter, or PM2.5, is defined as any particle with an aerodynamic diameter less
than 2.5 µm (Volk et al. 2013).

2As one might expect if agriculture is correlated in space.
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3.2.1 Air-quality monitors

This paper sets out to measure the effect of aerial pesticide applications on local
air quality in California’s San Joaquin Valley. The ideal candidate for air-quality
measurement would measure air quality throughout the southern San Joaquin Val-
ley with high precision and accuracy—and with high temporal frequency. While
many valuable measures of air quality exist, as discussed above, a large litera-
ture demonstrates the importance of PM2.5 levels for human health. The EPA’s
PM2.5 monitoring network therefore provides a sensible candidate for this task:
between 2000 and 2015, the EPA monitored PM2.5 levels using 53 unique monitors
located throughout the five counties of the southern San Joaquin Valley.3 Further, in
nearly every year, at least one monitor measured PM2.5 concentrations on each day
of the year, resulting in approximately 108,000 observations of PM2.5 levels in the
southern San Joaquin Valley between 2000 and 2015. Table 3.1 summarizes the
number of monitors and days observed for each year starting in 2000 and ending in
2015 for the five southern San Joaquin Valley counties. In addition, EPA monitors
play a central role in implementing the Clean Air Act in the United States and thus
supply a policy-relevant candidate for air-quality measurement in this paper (U.S.
E.P.A. 2016).

Each of the five counties on the southern end of California’s San Joaquin Valley
contain multiple EPA monitors.4 Figure 3.1 maps out the EPA monitors’ locations
throughout the five counties. These monitors report hourly PM2.5 local concentra-
tions (µg/m3) for a 24-hour period—either each day or every sixth day. Figure 3.2
plots the daily mean PM2.5 reading at each of the 53 monitors on each day the
monitor recorded values.5 Figure 3.2 also illustrates (1) substantial seasonal vari-
ation in PM2.5 concentrations at these monitors—ramping up in the late fall and
peaking in January—and (2) the tendency for PM2.5 concentrations in these five
counties to exceed established air-quality standards (U.S. E.P.A. 2013). Jointly,
Figure 3.1 and 3.2 suggest the EPA PM2.5 network offers a reasonable solution
for measuring air quality in the southern San Joaquin Valley, given its spatial and
temporal coverage/variation and its importance to environmental regulation.

3.2.2 Pesticide-use reports

The geographic focus of this paper—the southern counties of California’s San
Joaquin Valley—stems in part from availability of data on pesticide use. In 1990,
the state of California established the United States’ first state-level, mandatory
full-reporting system for pesticides (California D.P.R. 2000). Today the California
DPR’s pesticide-use reporting (PUR) system is widely regarded as the world’s most
comprehensive and high-quality record of pesticide use (California D.P.R. 2000;

3A number of the monitors phased in and out during this time so 22-36 monitors actively observed
each year.

4By name, the five counties are: Fresno County, Kern County, Kings County, Madera County, and
Tulare County.

5Figure C.1 repeats this exercise but uses the daily maximum PM2.5 instead of the mean.
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Wilhoit 2012; Larsen, Gaines, and Deschênes 2017). By law, any individual who
applies agricultural pesticides must report the pesticide applications on a monthly
basis to the relevant county agricultural commissioner. The county agricultural
commissioner then sends the reports to the California DPR, who review, summarize,
and publish the PUR data.6 For application of agricultural pesticides, the user must
report (1) the date of application, (2) the location of application (section, township,
range), (3) the type of pesticide, (4) the amount of pesticide, and (5) identifiers
for the site and user (California D.P.R. 2000).7 Because the PUR system does not
systematically identify PURs below the section-township-range level, the finest spa-
tial resolution is the section, which is a grid of approximately one-square-mile cells.
This spatial restriction both limits attribution of pesticide use to PM2.5 concentra-
tions and limits the usefulness of wind-direction data, as I discuss in more detail
below.

Figures 3.3 and 3.4 depict the number of pesticide use reports and the tons
of pesticides applied, respectively, aggregated to the month of sample—across the
five study counties from 2000 to 2015. Each figure splits the summaries by (a)
aerially applied pesticides and (b) ground-applied pesticides. Figure 3.5 illustrates
the amount (number of tons) of pesticides applied by day of week across the five
counties in the same time period.8 The three sets of figures emphasize suggest
several relevant points. First, the five study counties are very active in pesticide
application—in the number of applications and in the amount (tons) of pesticides
applied. Second, time trends are quite apparent—both in annual cycles and weekly
cycles. Third, the time trends differ by the type of pesticide application (aerial
versus ground) and by the measure of application (count of PURs versus tonnage
of pesticides). Importantly, these time trends—or temporal clustering—exactly
describe a situation in which one may be concerned about the build up of particulate
matter from pesticide aggregation or drift.

Figures 3.6 and 3.7 map the intensities of aerial and ground pesticide use,
respectively—summing the total amount of pesticides applied within each section
from 2000 to 2015. The color scale of the sections’ shading depicts the log9 in-
tensity of pesticide use within the section over the 16-year period. The white dots
denote school locations10 to visually proxy for human population, and the white
lines delineate the five counties’ borders. Both maps illustrate the spatial variability
of pesticide use in California—and the intensity in many locations. The two maps in
Figures 3.6 and 3.7 also highlight the proximity of high levels pesticide applications
to human populations. While there are holes in density of pesticide applications
corresponding to the locations of major cities, many schools—and thus people—are

6The PUR data are publicly available on the California DPR’s website.
7The PUR also includes crop type, area planted, and area treated when the user applies the

pesticide to a crop.
8Figure C.2 repeats this exercise for the number of pesticide applications by day of week—the

trends are quite similar.
9Instead of an actual logarithmic transformation, I use the inverse hyperbolic sine so as to include

sections with exactly zero pounds of pesticide application.
10Using the database of school locations provided by CSCD.
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located on the edges of these cities. Many rural schools are located in sections with
high levels of pesticide applications.

3.2.3 Wind

The wind data for this project come from NASA’s North American Land Data Assim-
ilation Systems, version 2 (NLDAS-2). The NLDAS-2 joins observation-based and
model-reanalysis data to generate land-surface models. Part of this process involves
generating (forcing) wind-vector data. The resulting wind data are available for
each hour since January 1979 at a 1/8th-degree grid covering all of North Amer-
ica (Xia et al., NCEP/EMC(2009)). Specifically, the NLDAS-2 generates two wind
vectors—a zonal vector U component (the westerly component) and the meridional
V component (the southerly component) (Xia et al., NCEP/EMC(2009)). Jointly
the two components determine the wind direction (degrees) and speed (meters
per second). The data appendix contains more information on these trigonometric
calculations.

3.3 Empirical strategy

As highlighted above, this paper seeks to answer whether there is significant evi-
dence that aerially applied pesticides aggregate and drift in ways that contribute to
the poor air quality observed in the southern counties of California’s San Joaquin
Vally. In order to detect variation in air quality, I specifically consider local PM2.5 con-
centrations at EPA monitors in the study counties (depicted in Figure 3.1). Accord-
ingly, one might model the PM2.5 concentration on a given day t at a given monitor
i by

ConcentrationPM2.5
i,t = f

(
di,t

(
Pesticidesi,t

)
, Weatheri,t

)
+ εi,t (3.1)

where di,t(Pesticidesi,t) defines an arbitrary distance-based aggregator of the pesti-
cides applied on day t,11 Weatheri,t refers to the weather near monitor i on day t, f
represents an arbitrary function of the pesticides applied (including their distances)
and weather on day t relative to monitor i, and εi,t catches stochastic variation in
PM2.5 concentrations.

3.3.1 Fixed effects

To place some structure on equation 3.1, I allow quantities of pesticides applied at
similar distances from a monitor to similarly affect that PM2.5 concentrations at
the monitor. Such an assumption effectively creates buffers—or concentric rings—
around each monitor, where each ton of pesticide between rings similarly affects
PM2.5 concentrations. This design is sometimes referred to as a doughnut design.
Figure 3.8 illustrates this design for three buffers: (1) within 1.5km, (2) between
1.5km and 3km, and (3) between 3km and 25km.

11While likely goes to zero at some distance, effectively creating a buffer around monitor i.
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A fixed-effect based estimating equation for this design is

ConcentrationPM2.5
i,t = β1

∑
k(t)

1
{
Di,k(t) < 1.5km

}
× pk(t) + (3.2)

β2

∑
k(t)

1
{
1.5km ≤ Di,k(t) < 3km

}
× pk(t) +

β3

∑
k(t)

1
{
3km ≤ Di,k(t) < 25km

}
× pk(t) +

γi + δt + εi,t

where i indexes EPA monitors; k(t) references the kth pesticide application on day
t; and pk(t) records the amount of pesticides applied in application k(t). In addition,
Di,k(t) gives the distance (in kilometers) between EPA monitor i and pesticide appli-
cation k(t) at time t; 1{foo} denotes an indicator function for whether foo is true;
and γi and δt refer to individual-monitor and temporal fixed effects, respectively. I
vary the type of temporal fixed effect across several specifications—ranging from
day-of-sample to month-of-year, year, and day-of-week.12

The temporal fixed-effect specifications vary the identifying variation for the
parameters of interest—the β j—in equation 3.2. For instance, month-of-year fixed
effects control for the average PM2.5 concentrations and pesticide applications for a
day in the given calendar month throughout the sample period (conditional on the
individual-monitor fixed effects). Thus, identification of the β j results from (daily)
deviations from these observed means. This doughnut empirical design lends an
additional source of identifying variation—the concentric circles allow an additional
ton of pesticides applied in near proximity to the monitor to have a different effect
than an additional ton of pesticides applied farther from the monitor. Put simply:
identification in this fixed-effects doughnut design results from the question: On
days when pesticide applications near the monitor exceed the monthly norm, do
we also see PM2.5 concentrations exceed their monthly norms? Moreover, this
design offers a natural check for the plausibility of the results: the estimates for β1,
β2, and β3 in equation 3.2 should be monotonically decreasing, as aerially applied
pesticides diffuse through space—far-away applications should have smaller effects.
The results are consistent with this plausibility check. Finally, if pesticides negatively
affect (local) air quality, then β1 should be significantly greater than zero. If β2 > 0
or β3 > 0, then the estimates imply substantial aerial pesticide drift (movement over
space).

Although the fixed-effect identification strategy potentially isolates exogenous
variation, it is still susceptible to bias from omitted variables. The concern is that
there may be a daily-varying factor excluded from the model that causally affects
both PM2.5 concentrations and pesticide applications. If such a variable exists,
then the estimates for the β j may be positively or negatively biased, depending
upon the relationships between the omitted variable, PM2.5 concentrations, and

12I use month of year to refer to the calendar months (e.g., January) and month of sample to
reference specific month-year combinations (e.g., January 2010).
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pesticide applications. The concentric-circles design, in conjunction with day-of-
sample fixed effects, may alleviate some omitted-variable bias concerns, as the
identifying variation comes both from the amount of pesticide application and the
distances between the pesticide applications and the sensor. Thus, the omitted
variable would need to increase the number of pesticide applications near the EPA
monitor on the same day it increased the PM2.5 concentration near the EPA moni-
tor. Consequently, in addition to demonstrating general robustness, the different
fixed-effects specifications that I present in the results—and their different sources
of identifying variation—suggest that the results in this paper are not driven by
omitted-variable bias.

3.3.2 Wind-angle variation

To further the plausibility of the results, I present a second identification strategy,
which extends the fixed-effects doughnut design discussed above. This second design
further isolates plausibly exogenous identifying variation by incorporating daily
deviations from the prevailing wind pattern (angle) at the EPA sensor—separating
upwind, downwind, and orthogonal wind pesticide applications.

In order to isolate upwind pesticide applications, I calculate (a) the angle be-
tween each EPA monitor and each pesticide application13 and (b) the angle of the
wind at each EPA monitor.14 The difference between these two angles gives a mea-
sure of whether pesticide application pk(t) occurred upwind of monitor i (in degrees).
To integrate this upwind measure into an empirical model, I bin applications into
three broad groups: (1) upwind application where the absolute difference be-
tween the wind’s angle and the monitor-to-application angle angle is less than 60
degrees; (2) orthogonal application where the absolute difference between the
two angles is between 60 and 120 degrees; and (3) downwind application where
the absolute difference between the two angles is between 120 degrees and 180
degrees.15 Figure 3.9a illustrates this wind-angle grouping.

Combining this wind-direction information/variation with the fixed-effects dough-
nut model in equation 3.2, the estimating equation for this new model is

ConcentrationPM2.5
i,t = (3.3)

α11

∑
k(t)

1
{(

Di,k(t) < 1.5km
)
∧

(∣∣∣θi,k(t)

∣∣∣ ∈ [0, 60]
)}
× pk(t) +

α12

∑
k(t)

1
{(

Di,k(t) < 1.5km
)
∧

(∣∣∣θi,k(t)

∣∣∣ ∈ (60, 120]
)}
× pk(t) +

α13

∑
k(t)

1
{(

Di,k(t) < 1.5km
)
∧

(∣∣∣θi,k(t)

∣∣∣ ∈ (120, 180]
)}
× pk(t) +

13Because the PUR data only identify applications at the section level, I use the geographic
coordinates of the section’s centroid for each application within the section.

14The wind’s vector points upwind: the angle between a ray pointing toward the wind’s origin
and due North.

15An alternative way to think about measure is the angle between two vectors: (1) the vector
between the pesticide application and the EPA monitor, and (2) the wind vector at the EPA monitor.
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α21

∑
k(t)

1
{(

1.5km ≤ Di,k(t) < 3km
)
∧

(∣∣∣θi,k(t)

∣∣∣ ∈ [0, 60]
)}
× pk(t) +

α22

∑
k(t)

1
{(

1.5km ≤ Di,k(t) < 3km
)
∧

(∣∣∣θi,k(t)

∣∣∣ ∈ (60, 120]
)}
× pk(t) +

α23

∑
k(t)

1
{(

1.5km ≤ Di,k(t) < 3km
)
∧

(∣∣∣θi,k(t)

∣∣∣ ∈ (120, 180]
)}
× pk(t) +

α31

∑
k(t)

1
{(

3km ≤ Di,k(t) < 25km
)
∧

(∣∣∣θi,k(t)

∣∣∣ ∈ [0, 60]
)}
× pk(t) +

α32

∑
k(t)

1
{(

3km ≤ Di,k(t) < 25km
)
∧

(∣∣∣θi,k(t)

∣∣∣ ∈ (60, 120]
)}
× pk(t) +

α33

∑
k(t)

1
{(

3km ≤ Di,k(t) < 25km
)
∧

(∣∣∣θi,k(t)

∣∣∣ ∈ (120, 180]
)}
× pk(t) +

γi + δt + εi,t

where all quantities maintain the same definitions as in equation 3.2, and θit denotes
the difference in the wind angle on day t and monitor i and the pesticide angle
between monitor i and pesticide application k(t)—as defined and discussed directly
above. Put simply, equation 3.3 allows the effect of a pesticide application on
PM2.5 concentration to vary by the application’s distance from the monitor and by
the application’s degree of upwind-ness—again controlling for a variety of individual
(γi) and temporal (δt) fixed effects.

By adding wind-induced variation in the (conditional) amount of pesticides
applied, equation 3.3 further relaxes the assumptions required to identify its param-
eters of interest (the α j). In order for an omitted variable to bias the ordinary least
squares (OLS) estimates of the α j, there would need to be an observed variable
correlated with both (1) PM2.5 concentrations and (2) the amount of pesticides
applied (3) upwind of EPA monitors—and with (4) the distances between the pesti-
cide applications and the EPA monitors. In the absence of such a process, OLS will
provide causally valid, consistent estimates for the extent to which aerial pesticide
applications and their drift affect local PM2.5 concentrations.

The two panels of Figure 3.9 depict this wind-induced variation design—illustrating
how the design estimates a coefficient for each 60-degree segment of the three
distance-based radial groups.16

3.3.3 Measurement error

Having outlined this paper’s two identification strategies and its datasets, I now dis-
cuss an empirically relevant data issue before presenting the results from estimating
equations 3.2 and 3.3 via OLS.

Measurement error presents problems for both empirical designs in this paper,
but it is particularly important for the design using wind-induced variation. One

16I enforce a requirement for symmetry, e.g., pesticide applications within 1.5km have the same
effect regardless of whether they occur at -45 degrees or 45 degrees of the wind.
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of the main sources of measurement error comes from the lack of spatial precision
in the PUR data. As discussed above, the PURs only identify pesticide applications
down to the section level. Sections can be as large as 1 mile by 1 mile, meaning
geography-based variables are likely to contain substantial noise. The variables of
interest in equations 3.2 and 3.3 are both based upon the geographic coordinates of
the pesticide applications. For the distance-based indicators in the two regressions,
this measurement error simply adds noise to the coordinates—akin to rounding, in
some sense. Consequently, measurement error for the fixed-effects doughnut design
is classical in nature and will simply attenuate OLS parameter estimates (Woolridge
2010).

For the the angle-based measurements, this geographic measurement error in-
duces classical measurement error for pesticides applications within the same distance
of an EPA monitor. For pesticide applications closer to the monitors, the attenuation
bias will be larger. To see this point, consider three cases. First, if a pesticide appli-
cation occurs in the same section as an EPA monitor, the uncertainty surrounding
the application’s location prevents one from knowing whether the application is up-
wind, downwind, or orthogonal to the monitor. Second, if the application occurs in
the section next to the monitor’s section, it is possible to bound the angle between
the EPA monitor and the application between −90 and 90 degrees—potentially
ruling out one of the three upwind categories—but we are still left with substantial
noise. Finally, for a pesticide application far from the monitor, there is little uncer-
tainty in the angle between the monitor and application. The result of this class
of semi-classical measurement error is that estimates for the parameters α1 j will be
more attenuated than the estimates for α2k.17

In addition, there are several other pertinent sources of noise in the data and,
therefore, in the empirical strategies. First, the reanalysis wind data are not actual
historical records—adding noise in addition to identifying variation. Second, the
data on pesticide applications come from self-reported pesticide-use reports. Self-
reported data often contain a degree of noise—and may contain some bias where
incentives lead to dishonest reporting. Third, aggregating pesticide applications
into distance- and/or angle-based groups potentially leads to a sort of aggregation
bias—averaging across the heterogeneous treatment effects within each group. As
a result of these channels of noise and attenuation, the parameter estimates in the
next section should be taken as lower bounds of the actual effects of aerial pesticide
applications on PM2.5 levels.

3.4 Results

Having described the identification strategies of two models—the fixed-effects
doughnut design and the wind-angle design—I now present the OLS estimates
for equations 3.2 and 3.3.

17It is also worth noting that statistical power follows a similar trend due to the close applications
covering smaller areas of land than the farther out application—resulting in more observations and
greater variation in distance-based groups that are farther from the monitors.
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3.4.1 Fixed effects

Table 3.2 presents the results for estimating equation 3.2 with OLS. Specifically,
Table 3.2 identifies the effect of an additional ton of aerially applied pesticides—
applied in one of three distance-based groups—on the mean PM2.5 concentration
at monitor i on day t. Each of the five columns of Table 3.2 represents a different
regression from a different fixed-effect specification for equation 3.2. Each speci-
fication includes a monitor fixed effect. Columns (1), (2), and (3) include day-of-
sample, week-of-sample, and month-of-sample fixed effects, respectively. Column
(4) incorporates three sets of time-based fixed effects: week-of-year, day-of-week,
and year fixed effects. Column (5) uses month-of-sample, day-of-week, and year
fixed effects.

Because aerial pesticide applications occur at a specific time during the day, one
might expect the daily mean to underestimate the effect of pesticide applications
on local air quality—averaging across affected and unaffected times of the day
and generating a sort of aggregation or attenuation bias. To potentially remedy
this problem, Table 3.3 replicates Table 3.2 but uses the daily maximum observed
PM2.5 concentration rather than the daily mean. The problem with this potential
remedy is that aerial applications may not move the maximum PM2.5 if they occur
at lower points of the PM2.5 diurnal cycle.

In each of the five specifications of Tables 3.2 and 3.3, the point estimate for the
distance group nearest to the EPA monitor (within 1.5 kilometers) is significantly
different from zero. The point estimates range from 0.12 to 0.23 for the daily mean
PM2.5 level, and they range from 0.15 to 0.34 for the daily maximum PM2.5 level.
The causal interpretation for the first point estimate in column (1) of Table 3.2 is
that each additional ton of aerially applied within 1.5 kilometers pesticides increases
that day’s mean PM2.5 level by approximately 0.23 µg/m3 [0.09, 0.37]. For column
(1) of Table 3.3, the interpretation is that each additional ton of pesticides applied
aerially within 1.5 kilometers of the EPA monitor increases the daily maximum
observed PM2.5 concentration by approximately 0.31 µg/m3 [0.12, 0.51].

The two panels of Figure 3.8 illustrate the spatial relationships of the results in
conjunction with the fixed-effect doughnut design for the first columns of Tables 3.2
and 3.3.

Across the ten regressions of Tables 3.2 and 3.3, the results present clear and
robust18 evidence that aerial pesticide applications significantly reduce local air
quality (increasing PM2.5 concentrations)—for aerial pesticide applications within
1.5 kilometers of the monitor. None of the results in the two tables present statis-
tically significant evidence that aerial applications affect PM2.5 levels beyond 1.5
kilometers.19

18Appendix tables C.1 and C.2 demonstrate further robustness by replicating Tables 3.2 and 3.3,
respectively, with Windsorized PUR application data—diminishing concerns that outliers in the
independent variable drive the results. The Data Appendix describes describes this Windsorization
in detail.

19While the coefficients on the distance groups farther than 1.5 kilometers are not statistically
significantly different from zero at conventional levels, the point estimates are consistently positive
and also decrease monotonically with distance. Furthermore, I particularly caution the reader from
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3.4.2 Wind-angle variation

Tables 3.4 and 3.5 contain the OLS results of estimating the wind-variation based
model in equation 3.3. Each column contains results from a separate fixed-effects
specification; all five regressions use daily mean PM2.5 concentration as their depen-
dent variable. Relative to the previously presented results/model in Table 3.2: the
results in Tables 3.4 and 3.5 introduce wind-based variation in pesticide exposure.

Figure 3.9a illustrates the spatial relationship and implications of the coefficients
estimated in Tables 3.4 and 3.5—specifically depicting the results of column (1)
of Table 3.4. The results portrayed in Figure 3.9a—and across all the columns
Tables 3.4 and 3.5—again suggest that aerially applied pesticides within 1.5km in-
crease local PM2.5 concentrations. Further, the wind-angle results suggest—as one
would expect from a more physics-based model—that this increase in PM2.5 levels
induced by aerial pesticides particularly stems from upwind pesticide applications.
Across the five specifications in Tables 3.4 and 3.5, the point estimates for Upwind
applications within 1.5 kilometers range from 0.24 to 0.29—slightly larger than the
non-wind results from Table 3.2. The causal interpretation for these results—using
column (1) of Table 3.4—is that each additional ton of aerial pesticides applied
upwind within 1.5 kilometers increases the daily mean PM2.5 concentration by
0.29 µg/m3 [0.05, 0.55].

The point estimates for the effect of upwind aerial pesticide applications within
1.5 kilometers are statistically significant and notably large across all five specifica-
tions in Tables 3.4 and 3.5. The point estimates for downwind applications 3–25
kilometers away are also significant across all five specifications, though the magni-
tude of the point estimates is quite small. No other estimated effect is consistently
significant across all five specifications.

Tables 3.6 and 3.7 replicate Tables 3.4 and 3.5 but with daily maximum PM2.5 rather
than daily mean PM2.5 . Figure 3.9b depicts the spatial effects of aerial-pesticide
applications, as estimated in column (1) of Table 3.6.

Overall, the results for the daily maximum PM2.5 concentration are fairly simi-
lar to the results that use the daily mean. The estimated effect of upwind pesticide
applications within 1.5 kilometers is highly statistically significant, and the point es-
timates for this effect are larger than the estimates for the mean, ranging from 0.29
to 0.49 µg/m3. The causal interpretation of this effect (for column (1) of Table 3.6)
is that each additional ton of pesticides aerially applied upwind within 1.5 kilome-
ters increases the daily local maximum PM2.5 concentration by 0.49 µg/m3 [0.19,
0.78]. One surprising outcome is the large (in magnitude) and negative coefficient
for pesticides applied within 1.5 kilometers orthogonally to the wind. This effect is
statistically significant at the 5-percent level in three of the five specifications.

Finally, while this empirical design offers greater potential for isolating exoge-
nous variation by using changes in wind patterns, one should bear in mind that this
design is also more prone to bias from measurement error. This susceptibility to
measurement-error induced bias originates in the lack of precise spatial information

reading too much into null results here, as attenuation bias is clearly present.
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in the PUR data and potential noise in the reanalysis wind data.20

3.5 Discussion and conclusion

Across two empirical designs and a many specifications, this paper finds signifi-
cant evidence that aerially applied pesticides reduce local air quality—increasing
PM2.5 concentrations at EPA monitoring sites. Whether the results use distance-
based variation or wind-and-distance variation, I find evidence consistent with
aerial pesticide applications increasing both daily mean and daily maximum PM2.5 lev-
els. The point estimates suggest that each additional ton of aerial pesticides applied
within 1.5 kilometers increases local PM2.5 concentrations by approximately 0.2
to 0.3 µg/m3. To put this coefficient in perspective: for days on which at least one
aerial pesticide application occurred in a section21, the 90th (99th) percentile of the
amount of aerial pesticides is 3 tons (18.4 tons).22 Thus I estimate that applications
at the 90th percentile increase local PM2.5 concentrations by approximately one
µg/m3, and applications at the 99th percentile increase PM2.5 levels by approximat-
ley 5 µg/m3—nearly half of the national standard for annual PM2.5 concentrations23.
Accordingly, while most aerial applications do not appear to substantially increase
local PM2.5 concentrations, a small percentage of large applications present cases
for concern with regards to degraded air quality. This result is consistent with recent
work tying large, local applications of pesticides to adverse health effect: Larsen,
Gaines, and Deschênes only find evidence the top five percentiles of pesticide expo-
sure increased adverse birth outcomes.

The results of this paper present some good news and some bad news for public-
health advocates. The good news: The results suggest that most aerial pesticide
applications do not meaningfully increase PM2.5 exposure—and the PM2.5 drift
may stay within a radius of approximately 1.5 kilometers. The bad news: The top
five-to-ten percent of applications substantially increase local PM2.5 concentrations
in a region that already suffers from high levels of exposure to PM2.5 and other
pollutants.

That said: attenuation matters. As discussed in the empirical strategy and results
sections, there are many reasons to believe that measurement error attenuates the
results in this paper. Thus, while this paper finds statistically significant evidence
of PM2.5 increases due to aerial pesticide applications, the point estimates are
most likely lower bounds for the true effect of aerial pesticide applications on local
PM2.5 levels. Therefore, much of the “good news” discussed above should be taken
with some caution. In addition, many of the results in this paper rely upon daily

20See the Measurement error subsection of the Empirical strategy section for a detailed description
of these measurement-error issues.

21Fifteen percent of section-days have at least one aerial pesticide application.
22Between 2000 and 2015, in the average year, the agricultural sector in the five study counties

aerially applied over 40,000 tons of pesticides.
23The EPA reduced the standard for PM2.5 in late 2012 from 15 µg/m3 to 12 µg/m3. The (U.S.

E.P.A. 2013).
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mean PM2.5 , which averages across the 24 hourly PM2.5 readings. While the
daily mean PM2.5 level is relevant for regulation and—to some degree—health,
contemporaneous exposure to PM2.5 also matters. The results of this paper likely
substantially underestimate the effect of aerial pesticides on contemporaneous air
quality. For instance, if a user applies pesticides at 8:00 AM—as many of the PURs
report—the daily mean will include eight unaffected hours preceding the application,
followed by 16 affected hours—suggesting the true effect may be 50 percent larger
that the estimated effect.24

A final caveat: PM2.5 is only one measure of local air conditions. For many
emissions—and particularly for pesticides—exposures to specific chemicals are of
great importance.

Overall, the results in this paper suggest that large aerial pesticide applications
substantially increase local PM2.5 exposure—particularly downwind of the applica-
tion. While policies that target individual pesticide applications or individual users
may assist in limiting harmful levels of PM2.5 exposure, they likely miss important
effects from the spatiotemporal aggregation of pesticides. This outcome is particu-
larly important for instances where users apply pesticides in close spatial and tem-
poral proximities—especially when these applications are near sensitive/vulnerable
individuals. Such areas (conceivably illustrated in Figure 3.6) provide particularly
fruitful settings for attention from both policymakers and researchers—offering the
potential for investigating the degree to which these observed PM2.5 increases af-
fect health and/or considering efficient spatiotemporal regulations that internalize
the costs of pesticide agglomeration and drift.

24This calculation assumes a homogeneous effect on the 16 hours following the application. If
only a few of the 16 hours are actually affected, the true contemporaneous effect of aerial pesticides
applications on local air quality will be many times larger than the point estimates in this paper, e.g.,
twelve times that of the mean effect if only two hours are affected.
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3.6 Figures

Figure 3.1: EPA PM2.5 monitor locations: Unique monitors, 2000–2015

Kings County

Kern County

Fresno County

Madera County

Tulare County

Notes: This figure maps the locations of the EPA’s PM2.5 monitors (shaded diamonds) in the five
counties of the southern San Joaquin Valley. Darker shading denotes the presence of multiple
monitors at/near the same site.
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Figure 3.2: EPA PM2.5 records: Daily mean PM2.5 concentration at each monitor, 2000–2015

Notes: Each point in this figure represents the mean PM2.5 on the given day (x axis) for a specific monitor. The two dashed horizontal lines denote
two different primary National Ambient Air Quality Standards (NAAQS), established January 15, 2013. The lower line establishes the standard (12.0
µg/m3) for the the 3-year arithmetic mean. The higher line marks the standard (35 µg/m3) for the 3-year mean of the 98th percentile (U.S. E.P.A.
2013).
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Figure 3.3: Number of pesticide applications: 2000–2015, by month
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(b) Ground-applied pesticides
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Notes: These figures depict the number of PURs file each month for aerial applications (top) and
ground applications (bottom). The counts only include the PURs from the five counties of southern
San Joaquin Valley that this paper studies. Source: Author using data from California D.P.R. 2013.
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Figure 3.4: Tons of pesticides applied: 2000–2015, by month

(a) Aerially applied pesticides
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(b) Ground-applied pesticides
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Notes: These figures depict the amount of pesticides (tons) applied each month in the five study
counties between 2000 and 2015, separating the pesticide applications by aerial applications (top)
and ground applications (bottom).Source: Author using data from California D.P.R. 2013.
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Figure 3.5: Tons of pesticides applied: 2000–2015, by day of week

(a) Aerially applied pesticides

0

25,000

50,000

75,000

100,000

125,000

Sun Mon Tue Wed Thu Fri Sat
Day of week

To
ns

 o
f 

pe
st

ic
id

es
 a

pp
lie

d

(b) Ground-applied pesticides
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Notes: These figures depict the amount of pesticides (tons) applied by day of week in the five study
counties between 2000 and 2015, separating the pesticide applications by aerial applications (top)
and ground applications (bottom).Source: Author using data from California D.P.R. 2013.
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Figure 3.6: Spatial intensity of aerial pesticide use: Total pounds of aerial pesti-
cide applications in study counties, 2000–2015

Notes: The shading on the map shows the intensity of aerial pesticide applications within each
section from 2000–2015. The shading uses an inverse hyperbolic sine scale (approximately log).
White dots denote schools, which I provide as a visual proxy for population. White lines reference
county borders.
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Figure 3.7: Spatial intensity of ground pesticide use: Total pounds of ground
pesticide applications in study counties, 2000–2015

Notes: The shading on the map shows the intensity of ground pesticide applications within each
section from 2000–2015. The shading uses an inverse hyperbolic sine scale (approximately log).
White dots denote schools, which I provide as a visual proxy for population. White lines reference
county borders.
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Figure 3.8: The effect of pesticides on PM: Estimated increase in PM2.5 from one ton of aerially applied pesticides using
fixed-effects doughnut design

(a) Daily mean PM2.5
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(b) Daily max. PM2.5
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Notes: This figure illustrates the fixed-effect doughnut design of equation 3.2 and the resulting OLS coefficient estimates—as given in column (1) of
Table 3.2 (a) and column (1) Table 3.3 (b).
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Figure 3.9: The effect of pesticides and wind on PM: Estimated increase in PM2.5 from one ton of aerially applied
pesticides using wind variation

(a) Daily mean PM2.5
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Coefficient: Increase in PM2.5 (daily max.) from one ton of pesticides

Notes: This figure illustrates the wind-variation design of equation 3.3 and the resulting OLS coefficient estimates—as given in column (1) of
Table 3.4 (a) and column (1) Table 3.6 (b).
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3.7 Tables

3.7.1 Descriptive tables

Table 3.1: Number of monitors and observations US EPA PM2.5 monitoring
network in study counties

Year N. unique days N. unique monitors N. observations

2000 353 23 1,978
2001 361 23 2,261
2002 365 22 4,068
2003 365 22 4,310
2004 366 23 3,596
2005 365 23 4,276
2006 365 23 4,391
2007 365 26 6,483
2008 366 28 6,312
2009 365 30 6,926
2010 365 29 8,916
2011 365 31 10,174
2012 366 36 11,165
2013 365 33 11,337
2014 365 32 10,842
2015 365 30 11,150

All 5,827 53 108,185

Notes: The total number of observations in a year does not equal Ndays × Nmonitors because some
monitors run every sixth day, rather than every day. For that same reason—and if one or more daily
monitors or out of operation—the EPA will observe fewer than 365 days in the year.
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3.7.2 OLS results
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Table 3.2: Increases in mean PM2.5: Same-day, aerially applied pesticides

Dependent variable: Mean daily PM2.5 level

(1) (2) (3) (4) (5)

Tons of pesticide (a) 0.2298∗∗∗ 0.1167∗∗ 0.1952∗∗ 0.1765∗∗ 0.2173∗∗

within 1.5km (0.07384) (0.04824) (0.09388) (0.07626) (0.09743)

Tons of pesticide (b) 0.0187 0.0290 0.0491 0.0471 0.0428
between 1.5km and 3km (0.08380) (0.05007) (0.05252) (0.06065) (0.06687)

Tons of pesticide (c) 0.0124∗ 0.0173∗∗ 0.0087 0.0088 0.0055
between 3km and 25km (0.00734) (0.00679) (0.00722) (0.00733) (0.00787)

Monitor FE T T T T T
Day-of-sample FE T F F F F
Week-of-sample FE F T F F F
Month-of-sample FE F F T F F
Week-of-year FE F F F T F
Month-of-year FE F F F F T
Day-of-week FE F F F T T
Year FE F F F T T
N 26,242 26,242 26,242 26,242 26,242

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1) EPA sensor and (2) day of sample. FE refers to fixed effect.
I two-way cluster the errors by (1) monitor and (2) day of sample. Significance levels: *10%, **5%, ***1%. The letters in parentheses (e.g., ‘(a)’)
reference labeled areas in the figures associated with these results.
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Table 3.3: Increases in max. PM2.5: Same-day, aerially applied pesticides

Dependent variable: Maximum daily PM2.5 level

(1) (2) (3) (4) (5)

Tons of pesticide (a) 0.3149∗∗∗ 0.1321∗∗∗ 0.2104∗∗ 0.1607∗∗ 0.2036∗∗

within 1.5km (0.09769) (0.04612) (0.08501) (0.06697) (0.08453)

Tons of pesticide (b) 0.0277 0.0454 0.0713 0.0740 0.0675
between 1.5km and 3km (0.09168) (0.05163) (0.05048) (0.05977) (0.06364)

Tons of pesticide (c) 0.0099 0.0142∗ 0.0040 0.0020 −0.0020
between 3km and 25km (0.00809) (0.00759) (0.00851) (0.00809) (0.00895)

Monitor FE T T T T T
Day-of-sample FE T F F F F
Week-of-sample FE F T F F F
Month-of-sample FE F F T F F
Week-of-year FE F F F T F
Month-of-year FE F F F F T
Day-of-week FE F F F T T
Year FE F F F T T
N 26,242 26,242 26,242 26,242 26,242

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1) EPA sensor and (2) day of sample. FE refers to fixed effect.
I two-way cluster the errors by (1) monitor and (2) day of sample. Significance levels: *10%, **5%, ***1%. The letters in parentheses (e.g., ‘(a)’)
reference labeled areas in the figures associated with these results.
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Table 3.4: Increases in mean PM2.5 from aerial pesticides: Wind-variation
results

Dependent variable: Mean daily PM2.5 level

(1) (2) (3)

Tons of pesticide (a) 0.2983∗∗ 0.2380∗∗∗ 0.2781∗∗∗

within 1.5km; Upwind (0.12671) (0.07876) (0.09443)

Tons of pesticide (b) 0.0306 −0.4253∗∗∗ −0.0473
within 1.5km; Orthogonal (0.12767) (0.05577) (0.11644)

Tons of pesticide (c) 0.2227 0.1212∗ 0.1606
within 1.5km; Downwind (0.14474) (0.07032) (0.19808)

Tons of pesticide (d) −0.0216 0.0349 0.0783
between 1.5km and 3km; Upwind (0.10813) (0.10567) (0.09928)

Tons of pesticide (e) 0.0691 0.0202 0.0462
between 1.5km and 3km; Orthogonal (0.04851) (0.04303) (0.03805)

Tons of pesticide (f) −0.0210 0.0464 −0.0059
between 1.5km and 3km; Downwind (0.25762) (0.14887) (0.11126)

Tons of pesticide (g) 0.0107 0.0122 0.0018
between 3km and 25km; Upwind (0.01057) (0.00839) (0.01026)

Tons of pesticide (g) 0.0105∗∗ 0.0200∗∗∗ 0.0136
between 3km and 25km; Orthogonal (0.00500) (0.00650) (0.00846)

Tons of pesticide (i) 0.0216∗∗∗ 0.0310∗∗∗ 0.0248∗∗∗

between 3km and 25km; Downwind (0.00753) (0.00889) (0.00828)

Monitor FE T T T
Day-of-sample FE T F F
Week-of-sample FE F T F
Month-of-sample FE F F T
N 26,242 26,242 26,242

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1) EPA
sensor and (2) day of sample. FE refers to fixed effect. Upwind refers to the degree to which
pesticide applications occured upwind of the EPA monitor—0 and 60 degrees (in absolute value).
Similarly, I label angles between 60 and 120 degrees as Orthogonal and angles between 120 and
180 degrees as Downwind. See the Empirical Strategy section for a detailed explanation. I two-way
cluster the errors by (1) monitor and (2) day of sample. Significance levels: *10%, **5%, ***1%.
The letters in parentheses (e.g., ‘(a)’) reference labeled areas in the figures associated with these
results.
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Table 3.5: Increases in mean PM2.5 from aerial pesticides: Wind-variation
results

Dependent variable: Mean daily PM2.5 level

(1) (2)

Tons of pesticide (a) 0.2465∗∗ 0.2819∗∗

within 1.5km; Upwind (0.11788) (0.12110)

Tons of pesticide (b) −0.0721 −0.0578
within 1.5km; Orthogonal (0.09426) (0.10508)

Tons of pesticide (c) 0.1883 0.2392
within 1.5km; Downwind (0.14685) (0.18599)

Tons of pesticide (d) 0.0981 0.0963
between 1.5km and 3km; Upwind (0.10155) (0.11903)

Tons of pesticide (e) 0.0891∗ 0.0755
between 1.5km and 3km; Orthogonal (0.05109) (0.05202)

Tons of pesticide (f) −0.1957 −0.1793
between 1.5km and 3km; Downwind (0.17549) (0.16402)

Tons of pesticide (g) 0.0019 −0.0005
between 3km and 25km; Upwind (0.01037) (0.01166)

Tons of pesticide (g) 0.0135 0.0091
between 3km and 25km; Orthogonal (0.00896) (0.00952)

Tons of pesticide (i) 0.0249∗∗ 0.0198∗∗

between 3km and 25km; Downwind (0.01032) (0.00978)

Monitor FE T T
Week-of-year FE T F
Month-of-year FE F T
Day-of-week FE T T
Year FE T T
N 26,242 26,242

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1) EPA
sensor and (2) day of sample. FE refers to fixed effect. Upwind refers to the degree to which
pesticide applications occured upwind of the EPA monitor—0 and 60 degrees (in absolute value).
Similarly, I label angles between 60 and 120 degrees as Orthogonal and angles between 120 and
180 degrees as Downwind. See the Empirical Strategy section for a detailed explanation. I two-way
cluster the errors by (1) monitor and (2) day of sample. Significance levels: *10%, **5%, ***1%.
The letters in parentheses (e.g., ‘(a)’) reference labeled areas in the figures associated with these
results.
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Table 3.6: Increases in max. PM2.5 from aerial pesticides: Wind-variation
results

Dependent variable: Maximum daily PM2.5 level

(1) (2) (3)

Tons of pesticide (a) 0.4869∗∗∗ 0.3073∗∗∗ 0.3458∗∗∗

within 1.5km; Upwind (0.15024) (0.08086) (0.10892)

Tons of pesticide (b) −0.1899 −0.6967∗∗∗ −0.2682∗

within 1.5km; Orthogonal (0.25160) (0.10545) (0.13782)

Tons of pesticide (c) 0.1961∗ 0.1174 0.1401
within 1.5km; Downwind (0.11802) (0.08083) (0.19523)

Tons of pesticide (d) 0.0508 0.1402 0.1958
between 1.5km and 3km; Upwind (0.14342) (0.12992) (0.12136)

Tons of pesticide (e) 0.0024 −0.0324 0.0116
between 1.5km and 3km; Orthogonal (0.07906) (0.04590) (0.04432)

Tons of pesticide (f) 0.0627 0.0449 −0.0498
between 1.5km and 3km; Downwind (0.30296) (0.28186) (0.18293)

Tons of pesticide (g) 0.0068 0.0060 −0.0055
between 3km and 25km; Upwind (0.01207) (0.00989) (0.01270)

Tons of pesticide (g) 0.0122∗∗ 0.0224∗∗∗ 0.0133
between 3km and 25km; Orthogonal (0.00566) (0.00749) (0.00973)

Tons of pesticide (i) 0.0171∗∗ 0.0303∗∗∗ 0.0220∗∗

between 3km and 25km; Downwind (0.00803) (0.00997) (0.00977)

Monitor FE T T T
Day-of-sample FE T F F
Week-of-sample FE F T F
Month-of-sample FE F F T
N 26,242 26,242 26,242

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1) EPA
sensor and (2) day of sample. FE refers to fixed effect. Upwind refers to the degree to which
pesticide applications occured upwind of the EPA monitor—0 and 60 degrees (in absolute value).
Similarly, I label angles between 60 and 120 degrees as Orthogonal and angles between 120 and
180 degrees as Downwind. See the Empirical Strategy section for a detailed explanation. I two-way
cluster the errors by (1) monitor and (2) day of sample. Significance levels: *10%, **5%, ***1%.
The letters in parentheses (e.g., ‘(a)’) reference labeled areas in the figures associated with these
results.
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Table 3.7: Increases in max. PM2.5 from aerial pesticides: Wind-variation
results

Dependent variable: Maximum daily PM2.5 level

(1) (2)

Tons of pesticide (a) 0.2856∗∗∗ 0.3221∗∗∗

within 1.5km; Upwind (0.10680) (0.11132)

Tons of pesticide (b) −0.3417∗∗∗ −0.2873∗∗

within 1.5km; Orthogonal (0.10677) (0.12585)

Tons of pesticide (c) 0.1484 0.1934
within 1.5km; Downwind (0.13873) (0.17877)

Tons of pesticide (d) 0.2173∗ 0.2081
between 1.5km and 3km; Upwind (0.12125) (0.13675)

Tons of pesticide (e) 0.0603 0.0554
between 1.5km and 3km; Orthogonal (0.06407) (0.06387)

Tons of pesticide (f) −0.2374 −0.2399
between 1.5km and 3km; Downwind (0.28403) (0.25004)

Tons of pesticide (g) −0.0086 −0.0114
between 3km and 25km; Upwind (0.01273) (0.01450)

Tons of pesticide (g) 0.0130 0.0075
between 3km and 25km; Orthogonal (0.00953) (0.00994)

Tons of pesticide (i) 0.0208∗∗ 0.0149
between 3km and 25km; Downwind (0.01057) (0.01019)

Monitor FE T T
Week-of-year FE T F
Month-of-year FE F T
Day-of-week FE T T
Year FE T T
N 26,242 26,242

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1) EPA
sensor and (2) day of sample. FE refers to fixed effect. Upwind refers to the degree to which
pesticide applications occured upwind of the EPA monitor—0 and 60 degrees (in absolute value).
Similarly, I label angles between 60 and 120 degrees as Orthogonal and angles between 120 and
180 degrees as Downwind. See the Empirical Strategy section for a detailed explanation. I two-way
cluster the errors by (1) monitor and (2) day of sample. Significance levels: *10%, **5%, ***1%.
The letters in parentheses (e.g., ‘(a)’) reference labeled areas in the figures associated with these
results.
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A.1 Figures

Figure A.1: California’s 16 CEC climate zones determine daily allowance within
season

Notes: The shapefile underlying this map comes from the California Energy Commission (CEC). This
map constitutes the CEC’s climate-based building zones, which affect a number of energy policies,
including households’ baseline allowances. California Energy Commission 2015, 2017
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Figure A.2: Example bill: PG&E residential natural gas bill

Notes: This 30-day bill for a PG&E customer (one of the authors) overlaps two calendar months in 2016: 7 days in November (24–30) and 23 days
in December (01–23). Because PG&E’s prices vary with the calendar month, PG&E needs to split consumption by calendar month. To achieve this
task, PG&E assumes the customer consumed evenly across all days in the bill. Specifically, PG&E calculates that the customer consumed 10 therms
and assigns the same amount of consumption to each day during the 30-day period. Thus, PG&E assigns 10 × 7/30 ≈ 2.33 to November (the consumer
spent 7 days in November in this 30-day bill) and 10 × 23/30 ≈ 7.67 to December (the consumer spent 23 days in November in this 30-day bill).
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Figure A.3: PRISM: Mean temperature raster for 15 June 2010
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Figure A.4: Expanding the study area: Zip codes neighboring the study’s zip codes

Zip-code group

Common Zips: zip codes served by both utilities

Neighbors 1: neighbors to Common Zips

Neighbors 2: neighbors to Neighbors 1

Neighbors 3: neighbors to Neighbors 2

Notes: This figure illustrates the four groups of zip codes referenced in Table A.16. The
groups begin with Common Zips—the group in which each zip code receives natural gas
service from both PG&E and SoCalGas—and expands by adding each group’s immediately
proximate neighbors. E.g., Neighbors 2 consists of all zip codes that neighbor a zip code in
Neighbors 1 (excluding those zip codes already included in another group).
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A.2 Tables

Table A.1: Price correlation: Bivariate correlations between types of prices

Type of Price

Marginal Average Avg. Mrg. Baseline Sim. mrg.

Marginal 1

Average 0.8898 1

Avg. Mrg. 0.8628 0.9421 1

Baseline 0.7901 0.942 0.9202 1

Sim. mrg. 0.8503 0.849 0.8174 0.781 1

Notes: Avg. or average price is the total bill divided by quantity. Avg. Mrg. or average marginal price
denotes the quantity-weighted average of the household’s marginal price. Base or baseline price
refers to the price the household pays for its first unit (therm) of natural gas. Sim. Mrg. or simulated
marginal price is the household’s marginal price (using the relevant pricing regime) as a function of
the household’s historical consumption patterns (lagged bills 10 through 14).
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Table A.2: Testing the simulated instrument:
Regressing marginal price on simulated marginal price

Dependent variable: Marginal price

(1) (2)

Simulated marginal price 0.6425∗∗∗ 0.6444∗∗∗

(0.00435) (0.00433)

Bill HDDs T T
Household FE T T
City month-of-sample FE T T
Lags used for sim. inst. 10–14 11–13
N 4,892,064 4,785,877

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1)
household and (2) utility by climate-zone by billing-cycle (the level at which price varies). All
regressions include heating degree days (HDDs) within the households’ billing period. Sim. Mrg. or
simulated marginal price is the household’s marginal price (using the relevant pricing regime) as a
function of the household’s historical consumption patterns (lagged bills 10 through 14 or 11
through 13). As discussed in the empirical strategy section, the numbers of observations differ due
to the lags required to calculate the simulated instrument for marginal price. Significance levels:
*10%, **5%, ***1%.
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Table A.3: Comparing lags, second-stage results: Marginal price with HH spot price IV

Dependent variable: Log(Consumption, daily avg.)

Lag of Marginal Price

(1) (2) (3) (4) (5)
1 Lead No lag 1 Lag 2 Lags 3 Lags

Log(Price) 0.0480 −0.1121 −0.0223 −0.2098∗∗∗ −0.1582∗∗

instrumented (0.0902) (0.0762) (0.0668) (0.0706) (0.0698)

First-stage F stat. 326.7 337.9 410.8 418.4 403.4
Bill HDDs T T T T T
Household FE T T T T T
City month-of-sample FE T T T T T
N 5,501,467 5,754,088 5,754,088 5,754,085 5,754,079

Notes: With regard to lags: No lag refers to the price for the household’s contemporaneous bill; 1 Lag refers to the price on the household’s previous
bill; etc. (HH) Spot price refers to the weekly average spot price for natural gas at Louisiana’s Henry Hub in the week preceding the utility’s price
change. Each column denotes a separate regression. Errors are two-way clustered within (1) household and (2) utility by climate-zone by billing-cycle
(the level at which price varies). All regressions include heating degree days (HDDs) within the households’ billing period. Significance levels: *10%,
**5%, ***1%.
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Table A.4: Comparing lags, second-stage results: Sim. marginal price with HH spot price IV

Dependent variable: Log(Consumption, daily avg.)

Lag of Simulated Marginal Price

(1) (2) (3) (4) (5)
1 Lead No lag 1 Lag 2 Lags 3 Lags

Log(Price) 0.0317 −0.0549 0.0329 −0.1705∗∗ −0.1596∗∗

instrumented (0.0899) (0.0718) (0.0626) (0.0698) (0.0720)

First-stage F stat. 354.7 379.6 393.2 369.9 332.1
Bill HDDs T T T T T
Household FE T T T T T
City month-of-sample FE T T T T T
N 4,778,382 4,892,064 4,785,877 4,682,526 4,590,790

Notes: With regard to lags: No lag refers to the price for the household’s contemporaneous bill; 1 Lag refers to the price on the household’s previous
bill; etc. Sim. Mrg. or simulated marginal price is the household’s marginal price (using the relevant pricing regime) as a function of the household’s
historical consumption patterns (lagged bills 10 through 14). (HH) Spot price refers to the weekly average spot price for natural gas at Louisiana’s
Henry Hub in the week preceding the utility’s price change. Each column denotes a separate regression. Errors are two-way clustered within (1)
household and (2) utility by climate-zone by billing-cycle (the level at which price varies). All regressions include heating degree days (HDDs) within
the households’ billing period. Significance levels: *10%, **5%, ***1%.
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Table A.5: Comparing lags, second-stage results: Avg. marginal price with HH spot price IV

Dependent variable: Log(Consumption, daily avg.)

Lag of Average Marginal Price

(1) (2) (3) (4) (5)
1 Lead No lag 1 Lag 2 Lags 3 Lags

Log(Price) 0.0432 −0.0853 −0.0313 −0.1734∗∗∗ −0.1356∗∗

instrumented (0.0745) (0.0618) (0.0568) (0.0585) (0.0585)

First-stage F stat. 969.4 1,036.4 1,275.3 1,311.0 1,306.1
Bill HDDs T T T T T
Household FE T T T T T
City month-of-sample FE T T T T T
N 5,501,467 5,754,088 5,754,088 5,754,085 5,754,079

Notes: With regard to lags: No lag refers to the price for the household’s contemporaneous bill; 1 Lag refers to the price on the household’s previous
bill; etc. Sim. Mrg. or simulated marginal price is the household’s marginal price (using the relevant pricing regime) as a function of the household’s
historical consumption patterns (lagged bills 10 through 14). (HH) Spot price refers to the weekly average spot price for natural gas at Louisiana’s
Henry Hub in the week preceding the utility’s price change. Each column denotes a separate regression. Errors are two-way clustered within (1)
household and (2) utility by climate-zone by billing-cycle (the level at which price varies). All regressions include heating degree days (HDDs) within
the households’ billing period. Significance levels: *10%, **5%, ***1%.
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Table A.6: Comparing lags, second-stage results: Avgerage price with HH spot price IV

Dependent variable: Log(Consumption, daily avg.)

Lag of Average Price

(1) (2) (3) (4) (5)
1 Lead No lag 1 Lag 2 Lags 3 Lags

Log(Price) 0.0515 −0.1244 −0.0177 −0.2312∗∗∗ −0.1680∗∗

instrumented (0.0972) (0.0805) (0.0730) (0.0760) (0.0749)

First-stage F stat. 679.1 725.8 884.4 899.4 923.7
Bill HDDs T T T T T
Household FE T T T T T
City month-of-sample FE T T T T T
N 5,501,467 5,754,088 5,754,088 5,754,085 5,754,079

Notes: With regard to lags: No lag refers to the price for the household’s contemporaneous bill; 1 Lag refers to the price on the household’s previous
bill; etc. Avg. or average price is the total bill divided by quantity. (HH) Spot price refers to the weekly average spot price for natural gas at Louisiana’s
Henry Hub in the week preceding the utility’s price change. Each column denotes a separate regression. Errors are two-way clustered within (1)
household and (2) utility by climate-zone by billing-cycle (the level at which price varies). All regressions include heating degree days (HDDs) within
the households’ billing period. Significance levels: *10%, **5%, ***1%.
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Table A.7: Comparing lags, second-stage results: Baseline price with HH spot price IV

Dependent variable: Log(Consumption, daily avg.)

Lag of Baseline Price

(1) (2) (3) (4) (5)
1 Lead No lag 1 Lag 2 Lags 3 Lags

Log(Price) 0.0420 −0.1164∗ −0.0066 −0.2030∗∗∗ −0.1396∗∗

instrumented (0.0839) (0.0684) (0.0637) (0.0650) (0.0630)

First-stage F stat. 1,085.3 1,143.4 1,241.8 1,333.2 1,533.2
Bill HDDs T T T T T
Household FE T T T T T
City month-of-sample FE T T T T T
N 5,501,467 5,754,088 5,754,088 5,754,085 5,754,079

Notes: With regard to lags: No lag refers to the price for the household’s contemporaneous bill; 1 Lag refers to the price on the household’s previous
bill; etc. Base or baseline price refers to the price the household pays for its first unit (therm) of natural gas. (HH) Spot price refers to the weekly
average spot price for natural gas at Louisiana’s Henry Hub in the week preceding the utility’s price change. Each column denotes a separate
regression. Errors are two-way clustered within (1) household and (2) utility by climate-zone by billing-cycle (the level at which price varies). All
regressions include heating degree days (HDDs) within the households’ billing period. Significance levels: *10%, **5%, ***1%.
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Table A.8: Heterogeneity by season or income:
Second-stage results, instrumenting average price with HH spot price

Dependent variable: Log(Consumption, daily avg.)

Average Price

Split by Season Split by CARE (Income)

(1) (2) (3) (4)
Summer Winter CARE Non-CARE

Log(Price) 0.0579∗ −0.4694∗∗∗ −0.2650∗∗∗ −0.1557∗∗

instrumented (0.0316) (0.1586) (0.0834) (0.0740)

First-stage F stat. 765.7 223.4 814.7 745.8
Bill HDDs T T T T
Household FE T T T T
City month-of-sample FE T T T T
N 3,065,917 2,688,168 2,435,135 3,318,950

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1)
household and (2) utility by climate-zone by billing-cycle (the level at which price varies). All
regressions include heating degree days (HDDs) within the households’ billing period. Summer
includes April through September. Winter includes October through March. CARE households
participate in the California Alternative Rates for Energy (CARE) program. CARE targets
low-income households and provides a 20 percent discount on natural gas bills. We estimate the
heterogeneity results by splitting the sample along the dimension(s) of heterogeneity and then
individually estimating the models. Avg. or average price is the total bill divided by quantity. Each
price in the table is the second lag of price, i.e., the prices from two bills prior to the current bill.
Significance levels: *10%, **5%, ***1%.
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Table A.9: Heterogeneity by season and income:
Second-stage results, instrumenting average price with HH spot price

Dependent variable: Log(Consumption, daily avg.)

Average Price

(1) (2) (3) (4)
Summer Summer Winter Winter

CARE Non-CARE CARE Non-CARE

Log(Price) 0.0495 0.0828∗∗ −0.6106∗∗∗ −0.3971∗∗

instrumented (0.0384) (0.0359) (0.1570) (0.1687)

First-stage F stat. 691.5 591.9 212.7 184.8
Bill HDDs T T T T
Household FE T T T T
City month-of-sample FE T T T T
N 1,293,144 1,772,773 1,141,991 1,546,177

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1)
household and (2) utility by climate-zone by billing-cycle (the level at which price varies). All
regressions include heating degree days (HDDs) within the households’ billing period. Each price in
the table is the second lag of price, i.e., the prices from two bills prior to the current bill. Summer
includes April through September. Winter includes October through March. CARE households
participate in the California Alternative Rates for Energy (CARE) program. CARE targets
low-income households and provides a 20 percent discount on natural gas bills. We estimate the
heterogeneity results by splitting the sample along the dimension(s) of heterogeneity and then
individually estimating the models. Avg. or average price is the total bill divided by quantity. Each
price in the table is the second lag of price, i.e., the prices from two bills prior to the current bill.
Significance levels: *10%, **5%, ***1%.
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Table A.10: First-stage results:
Robustness to specification: Marginal price instrumented with spot price

Dependent variable: Log(Marginal price)

(1) (2) (3) (4)

Spot price 0.3398∗∗∗ 0.3679∗∗∗ 0.3806∗∗∗ 0.3955∗∗∗

(0.0757) (0.0774) (0.0798) (0.0547)

Spot price × SoCalGas 0.7858∗∗∗ 0.7868∗∗∗ 0.7856∗∗∗ 0.7385∗∗∗

(0.0300) (0.0299) (0.0302) (0.0378)

First-stage F stat. 416.1 418.4 415.2 367.0
Bill HDDs F T T T
Household FE T T T T
City by month-of-sample FE T T F F
City by week-of-sample FE F F T F
Zip by week-of-sample FE F F F T
N 5,754,085 5,754,085 5,754,085 5,754,085

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1)
household and (2) utility by climate-zone by billing-cycle (the level at which price varies). All
regressions include heating degree days (HDDs) within the households’ billing period. Each price in
the table is the second lag of price, i.e., the prices from two bills prior to the current bill. (HH) Spot
price refers to the weekly average spot price for natural gas at Louisiana’s Henry Hub in the week
preceding the utility’s price change. Significance levels: *10%, **5%, ***1%.
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Table A.11: Second-stage results:
Robustness to specification: Marginal price instrumented with spot price

Dependent variable: Log(Consumption, daily avg.)

(1) (2) (3) (4)

Log(Marginal price) −0.3623∗∗∗ −0.2098∗∗∗ −0.1705∗∗∗ −0.1495∗∗

instrumented (0.0854) (0.0706) (0.0621) (0.063)

First-stage F stat. 416.1 418.4 415.2 367.0
Bill HDDs F T T T
Household FE T T T T
City by month-of-sample FE T T F F
City by week-of-sample FE F F T F
Zip by week-of-sample FE F F F T
N 5,754,085 5,754,085 5,754,085 5,754,085

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1)
household and (2) utility by climate-zone by billing-cycle (the level at which price varies). All
regressions include heating degree days (HDDs) within the households’ billing period. Each price in
the table is the second lag of price, i.e., the prices from two bills prior to the current bill.
Significance levels: *10%, **5%, ***1%.

Table A.12: Second-stage results:
Robustness to specification: Average price instrumented with spot price

Dependent variable: Log(Consumption, daily avg.)

(1) (2) (3) (4)

Log(Average price) −0.4076∗∗∗ −0.2312∗∗∗ −0.1891∗∗∗ −0.1574∗∗

instrumented (0.0911) (0.076) (0.067) (0.0656)

First-stage F stat. 897.5 899.4 881.1 661.1
Bill HDDs F T T T
Household FE T T T T
City by month-of-sample FE T T F F
City by week-of-sample FE F F T F
Zip by week-of-sample FE F F F T
N 5,754,085 5,754,085 5,754,085 5,754,085

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1)
household and (2) utility by climate-zone by billing-cycle (the level at which price varies). All
regressions include heating degree days (HDDs) within the households’ billing period. Each price in
the table is the second lag of price, i.e., the prices from two bills prior to the current bill. Avg. or
average price is the total bill divided by quantity. Significance levels: *10%, **5%, ***1%.
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Table A.13: Second-stage results:
Robustness to specification: Avg. mrg. price instrumented with spot price

Dependent variable: Log(Consumption, daily avg.)

(1) (2) (3) (4)

Log(Avg. marginal price) −0.2951∗∗∗ −0.1734∗∗∗ −0.1529∗∗∗ −0.1330∗∗

instrumented (0.0697) (0.0585) (0.0514) (0.0549)

First-stage F stat. 1,299.9 1,311.0 1,275.8 780.6
Bill HDDs F T T T
Household FE T T T T
City by month-of-sample FE T T F F
City by week-of-sample FE F F T F
Zip by week-of-sample FE F F F T
N 5,754,085 5,754,085 5,754,085 5,754,085

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1)
household and (2) utility by climate-zone by billing-cycle (the level at which price varies). All
regressions include heating degree days (HDDs) within the households’ billing period. Each price in
the table is the second lag of price, i.e., the prices from two bills prior to the current bill. Avg. Mrg.
or average marginal price denotes the quantity-weighted average of the household’s marginal price.
Significance levels: *10%, **5%, ***1%.
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Table A.14: Second-stage results:
Robustness to specification: Baseline price instrumented with spot price

Dependent variable: Log(Consumption, daily avg.)

(1) (2) (3) (4)

Log(Simulated mrg. price) −0.3148∗∗∗ −0.1705∗∗ −0.1310∗∗ −0.1025
instrumented (0.0843) (0.0698) (0.0602) (0.0675)

First-stage F stat. 368.9 369.9 331.3 181.9
Bill HDDs F T T T
Household FE T T T T
City by month-of-sample FE T T F F
City by week-of-sample FE F F T F
Zip by week-of-sample FE F F F T
N 4,682,526 4,682,526 4,682,526 4,682,526

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1)
household and (2) utility by climate-zone by billing-cycle (the level at which price varies). All
regressions include heating degree days (HDDs) within the households’ billing period. Each price in
the table is the second lag of price, i.e., the prices from two bills prior to the current bill. Sim. Mrg.
or simulated marginal price is the household’s marginal price (using the relevant pricing regime) as
a function of the household’s historical consumption patterns (lagged bills 10 through 14).
Significance levels: *10%, **5%, ***1%.
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Table A.15: Second-stage results:
Robustness to specification: Baseline price instrumented with spot price

Dependent variable: Log(Consumption, daily avg.)

(1) (2) (3) (4)

Log(Baseline price) −0.3643∗∗∗ −0.2030∗∗∗ −0.1653∗∗∗ −0.1376∗∗

instrumented (0.077) (0.065) (0.0576) (0.0572)

First-stage F stat. 1,322.9 1,333.2 1,187.3 762.5
Bill HDDs F T T T
Household FE T T T T
City by month-of-sample FE T T F F
City by week-of-sample FE F F T F
Zip by week-of-sample FE F F F T
N 5,754,085 5,754,085 5,754,085 5,754,085

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1)
household and (2) utility by climate-zone by billing-cycle (the level at which price varies). All
regressions include heating degree days (HDDs) within the households’ billing period. Each price in
the table is the second lag of price, i.e., the prices from two bills prior to the current bill. Base or
baseline price refers to the price the household pays for its first unit (therm) of natural gas.
Significance levels: *10%, **5%, ***1%.
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Table A.16: Second-stage results: Extending the set of zip codes to neighboring zip codes

Dependent variable: Log(Consumption, daily avg.)

Marginal Price

(1) (2) (3) (4)
Common Zips Neighbors 1 Neighbors 2 Neighbors 3

Log(Marginal price) −0.2098∗∗∗ −0.1896∗∗∗ −0.1241∗∗∗ −0.0946∗∗∗

instrumented (0.0706) (0.049) (0.0401) (0.0357)

First-stage F stat. 418.4 713.0 735.8 1,182.9
Bill HDDs T T T T
Household FE T T T T
City by month-of-sample FE T T T T
Levels of neighboring zip codes 0 1 2 3
N 5,754,085 11,679,371 19,629,128 28,277,567

Notes: Common zips refers the set of zip codes in which each zip code receives natural gas from both PG&E and SoCalGas. Neighbors 1 includes the
common zips and the zip codes that immediately neighbor the common zips. Neighbors 2 adds the neighbors of these neighbors (adding the neighbors
of Neighbors 1). Neighbors 3 adds the neighbors of Neighbors 2. Figure A.4 depicts these sets of zip codes. Each column denotes a separate regression.
Errors are two-way clustered within (1) household and (2) utility by climate-zone by billing-cycle (the level at which price varies). All regressions
include heating degree days (HDDs) within the households’ billing period. Each price in the table is the second lag of price, i.e., the prices from two
bills prior to the current bill. Significance levels: *10%, **5%, ***1%.
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Table A.17: Billing data description: Columns within the billing data

Feature name Description

Account ID Unique identifier for household account with the utility

Premise ID Unique physical-location based identifier

Prior read date Effectively the start date of the bill

Current read date Effectively the end date of the bill

Gas rate schedule Classifies type of customer (and the customer’s price regime)

Gas usage Volume of gas consumed during billing period (in therms)

Bill revenue Total bill charged to household for the current billing period

Climate band California Public Utility Commission-based climate region

Service address 9-digit zip Household’s 9-digit zip code

Service start date Date on which the household began service

Service stop date Date on which the household ended service
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A.3 Data appendix

A.3.1 Calculating bills

As discussed in the body of the paper, the majority of bills do not line up with
calendar months. Consequently, households’ billing periods do not line up with util-
ities’ monthly changes in price (or with changes in daily allowances resulting from
changes in seasons). Thus, a single bill will typically span multiple price regimes.
The two utilities deal with change in price in subtly different ways. This “problem”
results from the fact that neither utility knows households’ daily consumption.

PG&E When a PG&E customer’s bill spans multiple calendar months (price regimes),
PG&E calculates individual bills for each month. However, because PG&E does
not know the daily consumption levels, they assume constant daily consumption
throughout the billing period.

SoCalGas In the case that a SoCalGas customer’s bill spans multiple calendar
months (price regimes), SoCalGas computes time-weighted average prices (and
allowances) by aggregating the prices and allowances from the calendar months by
the number of days the bill spent in each month.

A.3.2 Data work

In this section, we describe the exclusion and cleaning choices that we made while
preparing the data for analysis. Our R scripts are available upon request, though
the data themselves cannot be shared due to agreements with the utilities and the
IRB.
Exclusions:

• We omitted SoCalGas price data from advice letters 3644, 3680, 3695, 3807,
4053, and 4061, as they were updated by letters 3660, 3697, 3697, 3810,
4055, and 4069, respectively.

• We dropped pre-2008 data (PG&E and prices/allowances), as SoCalGas did
not share billing data for pre-2009 bills.

• We trimmed the shortest 2.5% and longest 2.5% bills (resulted in keeping
bills of length between 28-34 days). We did this to omit the first or last
bills for a household and bills that were irregular for any other reasons. We
applied this requirement of 28–34 days to the current bill and the first through
the third lagged bills, because we consider the effect of lagged prices on
contemporaneous consumption.

• We dropped bills missing any critical information: number of therms (quan-
tity), revenue, etc.

• We dropped bills outside the central 99% of data (i.e., the bill’s revenue or
volume fall in the bottom 0.5% or in the top 0.5%). Our main results apply
this rule for the contemporaneous and the first three lagged bills.
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• We dropped bills whose total revenue we could not predict within five percent
(using known prices, quantities, and discounts).

• We dropped bills for exactly zero therms.

CARE status While the datasets presumably denoted CARE (California Alternate
Rates for Energy) households, we found many households not denoted as CARE
households whose charges were consistent with CARE pricing (i.e., charges were
80 percent of the standard tariffs). We classified these households as CARE house-
holds.
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B | Are our hopes too high? Testing
cannabis legalization’s potential
to reduce criminalization
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B.1 Tables
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Table B.1: Effect of cannabis legalization on drug-related offenses: Difference-in-differences results

Dependent variable

(1) (2) (3) (4)
# of incidents Log(# of incidents) # of cannabis incidents # of non-cannabis incidents

Legalization 40.5858∗∗∗ 0.8979∗∗∗ 11.9676∗∗∗ 15.3149∗∗∗

indicator (6.83) (0.143) (3.71) (2.46)

City FE T T T T
Year-Week FE T T T T
N 11,723 11,723 11,723 11,723

Notes: Each column denotes a separate regression with a different dependent variable. The observational unit is city i in week of sample t. Errors are
clustered within a city in a year. The mean number of drug-related police incidents before Colorado’s legalization was 41.62 (20.26 cannabis-related
offenses and 16.03 non-cannabis related offenses). Significance levels: *10%, **5%, ***1%.

131



www.manaraa.com

B.2 Model appendix

B.2.1 Consumer comparative statics

Drawing upon the consumer’s first-order conditions in (2.6) and (2.7) (call this
system of equations F), the Hessian matrix of second derivatives is

H = DxF =

U11(x1, x2) U12(x1, x2)

U21(x1, x2) U22(x1, x2)

 (B.1)

Assuming that consumers indeed maximize their utility on well-behaved utility
functions, the determinant of H is positive.

By taking partial derivatives of (2.6) and (2.7) with respect to the five exoge-
nous1 parameters of interest (p = {e1, e2, Γ1, Γ2, κ}), we get the matrix

DpF =

[
−κΓ1n′1 0 −κn1 0 −n1Γ1

0 −κΓ2n′2 0 −κn2 −n2Γ2

]
(B.2)

Assuming H is non-zero in the vicinity of the equilibrium—which follows from
assuming the consumer’s problem leads to a maximum—the implicit function theo-
rem implies 

∂x1

∂e1

∂x1

∂e2

∂x1

∂Γ1

∂x1

∂Γ1

∂x1

∂κ
∂x2

∂e1

∂x2

∂e2

∂x2

∂Γ1

∂x2

∂Γ1

∂x2

∂κ

 = −H −1 DpF (B.3)

Now define the inverse of the determinant of H as A , i.e.,

H −1 =
1

det H

[
U22 −U12

−U12 U22

]
= A

[
U22 −U12

−U12 U22

]
(B.4)

then (B.3) implies
∂x1

∂e1

∂x1

∂e2

∂x1

∂Γ1

∂x1

∂Γ1

∂x1

∂κ
∂x2

∂e1

∂x2

∂e2

∂x2

∂Γ1

∂x2

∂Γ1

∂x2

∂κ

 =

A

[
U22κΓ1n′1 −U12κΓ2n′2 U22κn1 −U12κn2 U22n1Γ1 − U12n2Γ2

−U21κΓ1n′1 U11κΓ2n′2 −U21κn1 U11κn2 U11n2Γ2 − U21n1Γ1

] (B.5)

1Exogeneous from the consumer’s perspective.
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B.2.2 Officer optimization

Substituting ∂xi/∂ei and ∂xi/∂e j from (2.8) and (2.9) into the officer’s first-order condi-
tions in (2.14–2.16) yields

Le1 = γ1
(
n′1 x1 + n1 A U22 κ Γ1 n′1

)
+ γ2 n2 A U21 κ Γ1 n′1 − λ = 0 (B.6)

Le2 = γ1 n1 A U12 κ Γ2 n′2 + γ2
(
n′2 x2 + n2 A U11 κ Γ2 n′2

)
− λ = 0 (B.7)

Lλ = E − e1 − e2 = 0 (B.8)

In addition, the first-order conditions from the officer’s constrained maximiza-
tion problem generate the bordered Hessian

HB =

0 1 1
1 L11 L12

1 L21 L22

 (B.9)

which, by the second-order condition of the officer’s constrained maximization,
implies det HB = L12 + L21 −L11 −L22 > 0.

Defining the system of equations given in (B.6–B.8) as G, we can again apply
the implicit function. I will assume that the second derivatives of the consumer’s
utility function are constant in the area surrounding the equilibrium. First, take
derivatives of G with respect to the three endogenous variables e = {e1, e2, λ}, i.e.,
DeG:

∂Le1

∂e1
= γ1

{
n′′1 x1 + n′1

∂x1

∂e1
+ A U22κΓ1

[(
n′1

)2
+ n1n′′1

]}
− γ2n2A U21κΓ1n′′1

∂Le1

∂e2
= γ1n′1

∂x1

∂e1
− γ2n′2A U21κΓ1n′1

∂Le1

∂λ
= −1

∂Le2

∂e1
= −γ1n′1A U12κΓ2n′2 + γ2n′2

∂x2

∂e1

∂Le2

∂e2
= −γ1n1A U12κΓ2n′′2 + γ2

{
n′′2 x2 + n′2

∂x2

∂e2
+ A U11κΓ2

[(
n′2

)2
+ n2n′′2

]}
∂Le2

∂λ
= −1

∂Lλ

∂λ
= −1
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∂Lλ

∂λ
= −1

∂Lλ

∂λ
= 0

Defining now define the exogenous parameters m = {γ1, γ2, Γ1, Γ2, κ} and differen-
tiate G with respect to m, i.e., DmG:

∂Le1

∂γ1
= n′1 (x1 + n1A U22κΓ1)

∂Le1

∂γ2
= −n2A U21κΓ1n′1

∂Le1

∂Γ1
= A κn′1 (γ1n1U22 − γ2n2U21)

∂Le1

∂Γ2
= 0

∂Le1

∂κ
= γ1n1A U22Γ1n′1 − γ2n2A U21Γ1n′1

∂Le2

∂γ1
= −n1A U12κΓ2n′2

∂Le2

∂γ2
= n′2 (x2 + A U11κΓ2)

∂Le2

∂Γ1
= 0

∂Le2

∂Γ2
= A κn′2(γ2n2U11 − γ1n1U12)

∂Le2

∂κ
= −γ1n1A U12Γ2n′2 + γ2n2A U11Γ2n′2

∂Lλ

∂m
= 0, ∀m ∈ m

Then, by the implicit function theorem,
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∂e1

∂γ1

∂e1

∂γ2

∂e1

∂Γ1

∂e1

∂Γ1

∂e1

∂κ
∂e2

∂γ1

∂e2

∂γ2

∂e2

∂Γ1

∂e2

∂Γ1

∂e2

∂κ

 = −
[
DeG

]−1DmG (B.10)

= −B

 −1 1 L22 −L12

1 −1 L11 −L21

L22 −L21 L11 −L12 L11L22 −L12L21

 DmG (B.11)

where B = det DeG, which is positive by the second-order conditions of constrained
maximization, and Li j denotes ∂Lei/∂e j.
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C | Do aerially applied pesticides af-
fect local air quality? Empirical
evidence from California’s San
Joaquin Valley
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C.1 Figures
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Figure C.1: EPA PM2.5 records: Daily maximum PM2.5 concentration at each monitor, 2000–2015

Notes: Each point in this figure represents the maximum PM2.5 on the given day (x axis) for a specific monitor. The two dashed horizontal lines
denote two different primary National Ambient Air Quality Standards (NAAQS), established January 15, 2013. The lower line establishes the standard
(12.0 µg/m3) for the the 3-year arithmetic mean. The higher line marks the standard (35 µg/m3) for the 3-year mean of the 98th percentile (U.S. E.P.A.
2013).
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Figure C.2: Number of pesticide applications: 2000–2015, by day of week

(a) Aerially applied pesticides
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(b) Ground-applied pesticides
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Notes: These figures depict the number PURs filed by day of week in the five study counties
between 2000 and 2015, separating the pesticide applications by aerial applications (top) and
ground applications (bottom).Source: Author using data from California D.P.R. 2013.
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C.2 Tables
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Table C.1: Increases in mean PM2.5: Same-day, aerially applied pesticides, Windsorized

Dependent variable: Mean daily PM2.5 level

(1) (2) (3) (4) (5)

Tons of pesticide (a) 0.2575∗∗∗ 0.1455∗∗ 0.2066∗ 0.2139∗∗ 0.2545∗∗

within 1.5km (0.0915) (0.0588) (0.1094) (0.0984) (0.1180)

Tons of pesticide (b) 0.0613 0.0295 0.0588 0.0482 0.0660
between 1.5km and 3km (0.1421) (0.0787) (0.0868) (0.1047) (0.1160)

Tons of pesticide (c) 0.0413 0.1047 0.0625 0.0413 0.0124
between 3km and 25km (0.0788) (0.0664) (0.0645) (0.0790) (0.0767)

Monitor FE T T T T T
Day-of-sample FE T F F F F
Week-of-sample FE F T F F F
Month-of-sample FE F F T F F
Week-of-year FE F F F T F
Month-of-year FE F F F F T
Day-of-week FE F F F T T
Year FE F F F T T
N 26,242 26,242 26,242 26,242 26,242

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1) EPA sensor and (2) day of sample. FE refers to fixed effect.
Windsorization replaces any value above the 97.5th percentile of a variable with the 97.5th percentile. Windsorization attempts to limit the influence of
extreme values within the independent variables(s). I two-way cluster the errors by (1) monitor and (2) day of sample. Significance levels: *10%,
**5%, ***1%. The letters in parentheses (e.g., ‘(a)’) reference labeled areas in the figures associated with these results.

141



www.manaraa.com

Table C.2: Increases in max. PM2.5: Same-day, aerially applied pesticides, Windsorized

Dependent variable: Maximum daily PM2.5 level

(1) (2) (3) (4) (5)

Tons of pesticide (a) 0.3400∗∗∗ 0.1466∗∗∗ 0.2006∗∗ 0.1730∗∗ 0.2140∗∗

within 1.5km (0.1026) (0.0484) (0.0975) (0.0841) (0.0994)

Tons of pesticide (b) 0.1140 0.0949 0.1327 0.1188 0.1384
between 1.5km and 3km (0.1792) (0.0968) (0.0997) (0.1223) (0.1346)

Tons of pesticide (c) 0.0218 0.0845 0.0349 0.0030 −0.0321
between 3km and 25km (0.0862) (0.0740) (0.0752) (0.0804) (0.0802)

Monitor FE T T T T T
Day-of-sample FE T F F F F
Week-of-sample FE F T F F F
Month-of-sample FE F F T F F
Week-of-year FE F F F T F
Month-of-year FE F F F F T
Day-of-week FE F F F T T
Year FE F F F T T
N 26,242 26,242 26,242 26,242 26,242

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1) EPA sensor and (2) day of sample. FE refers to fixed effect.
Windsorization replaces any value above the 97.5th percentile of a variable with the 97.5th percentile. Windsorization attempts to limit the influence of
extreme values within the independent variables(s). I two-way cluster the errors by (1) monitor and (2) day of sample. Significance levels: *10%,
**5%, ***1%. The letters in parentheses (e.g., ‘(a)’) reference labeled areas in the figures associated with these results.
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Table C.3: Increases in mean PM2.5 from aerial pesticides: Wind-variation
results, Windsorized

Dependent variable: Mean daily PM2.5 level

(1) (2) (3)

Tons of pesticide (a) 0.2954∗∗ 0.2557∗∗∗ 0.2607∗∗

within 1.5km; Upwind (0.1504) (0.0856) (0.1094)

Tons of pesticide (b) −0.0080 −0.4481∗∗∗ −0.0936
within 1.5km; Orthogonal (0.1395) (0.0482) (0.1039)

Tons of pesticide (c) 0.3131∗∗ 0.2040∗∗ 0.2123
within 1.5km; Downwind (0.1549) (0.0835) (0.2183)

Tons of pesticide (d) 0.0772 0.0704 0.1267
between 1.5km and 3km; Upwind (0.1327) (0.1029) (0.1018)

Tons of pesticide (e) 0.0582 −0.0267 −0.0055
between 1.5km and 3km; Orthogonal (0.2065) (0.1400) (0.1100)

Tons of pesticide (f) 0.0302 −0.0092 −0.0489
between 1.5km and 3km; Downwind (0.2739) (0.1801) (0.1392)

Tons of pesticide (g) −0.0270 −0.0210 −0.0966
between 3km and 25km; Upwind (0.1593) (0.1218) (0.1246)

Tons of pesticide (g) 0.0445 0.1522∗∗ 0.1454∗∗

between 3km and 25km; Orthogonal (0.0625) (0.0592) (0.0654)

Tons of pesticide (i) 0.1280∗∗ 0.2272∗∗∗ 0.1982∗∗∗

between 3km and 25km; Downwind (0.0527) (0.0519) (0.0609)

Monitor FE T T T
Day-of-sample FE T F F
Week-of-sample FE F T F
Month-of-sample FE F F T
N 26,242 26,242 26,242

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1) EPA
sensor and (2) day of sample. FE refers to fixed effect. Windsorization replaces any value above the
97.5th percentile of a variable with the 97.5th percentile. Windsorization attempts to limit the
influence of extreme values within the independent variables(s). Upwind refers to the degree to
which pesticide applications occured upwind of the EPA monitor—0 and 60 degrees (in absolute
value). Similarly, I label angles between 60 and 120 degrees as Orthogonal and angles between 120
and 180 degrees as Downwind. See the Empirical Strategy section for a detailed explanation. I
two-way cluster the errors by (1) monitor and (2) day of sample. Significance levels: *10%, **5%,
***1%. The letters in parentheses (e.g., ‘(a)’) reference labeled areas in the figures associated with
these results.
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Table C.4: Increases in mean PM2.5 from aerial pesticides: Wind-variation
results, Windsorized

Dependent variable: Mean daily PM2.5 level

(1) (2)

Tons of pesticide (a) 0.2604∗ 0.2961∗∗

within 1.5km; Upwind (0.1377) (0.1393)

Tons of pesticide (b) −0.1157 −0.1079
within 1.5km; Orthogonal (0.0997) (0.1018)

Tons of pesticide (c) 0.2294 0.2871
within 1.5km; Downwind (0.1617) (0.1962)

Tons of pesticide (d) 0.1421 0.1659
between 1.5km and 3km; Upwind (0.1117) (0.1306)

Tons of pesticide (e) 0.1427 0.1242
between 1.5km and 3km; Orthogonal (0.1537) (0.1557)

Tons of pesticide (f) −0.2580 −0.2195
between 1.5km and 3km; Downwind (0.2255) (0.2159)

Tons of pesticide (g) −0.1045 −0.1484
between 3km and 25km; Upwind (0.1421) (0.1421)

Tons of pesticide (g) 0.1078 0.0917
between 3km and 25km; Orthogonal (0.0741) (0.0750)

Tons of pesticide (i) 0.1746∗ 0.1545∗

between 3km and 25km; Downwind (0.0927) (0.0843)

Monitor FE T T
Week-of-year FE T F
Month-of-year FE F T
Day-of-week FE T T
Year FE T T
N 26,242 26,242

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1) EPA
sensor and (2) day of sample. FE refers to fixed effect. Windsorization replaces any value above the
97.5th percentile of a variable with the 97.5th percentile. Windsorization attempts to limit the
influence of extreme values within the independent variables(s). Upwind refers to the degree to
which pesticide applications occured upwind of the EPA monitor—0 and 60 degrees (in absolute
value). Similarly, I label angles between 60 and 120 degrees as Orthogonal and angles between 120
and 180 degrees as Downwind. See the Empirical Strategy section for a detailed explanation. I
two-way cluster the errors by (1) monitor and (2) day of sample. Significance levels: *10%, **5%,
***1%. The letters in parentheses (e.g., ‘(a)’) reference labeled areas in the figures associated with
these results.
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Table C.5: Increases in max. PM2.5 from aerial pesticides: Wind-variation
results, Windsorized

Dependent variable: Maximum daily PM2.5 level

(1) (2) (3)

Tons of pesticide (a) 0.5264∗∗∗ 0.3499∗∗∗ 0.3399∗∗

within 1.5km; Upwind (0.1745) (0.0799) (0.1334)

Tons of pesticide (b) −0.2352 −0.7615∗∗∗ −0.3614∗∗∗

within 1.5km; Orthogonal (0.2582) (0.1061) (0.1333)

Tons of pesticide (c) 0.2621∗∗ 0.1662∗∗ 0.1430
within 1.5km; Downwind (0.1273) (0.0724) (0.2130)

Tons of pesticide (d) 0.1283 0.1610 0.2410∗

between 1.5km and 3km; Upwind (0.1817) (0.1314) (0.1264)

Tons of pesticide (e) 0.0328 0.0672 0.1092
between 1.5km and 3km; Orthogonal (0.3910) (0.2236) (0.1692)

Tons of pesticide (f) 0.1200 −0.0378 −0.1210
between 1.5km and 3km; Downwind (0.3151) (0.3269) (0.2205)

Tons of pesticide (g) −0.0838 −0.1033 −0.1820
between 3km and 25km; Upwind (0.1787) (0.1373) (0.1428)

Tons of pesticide (g) 0.0583 0.1649∗∗ 0.1571∗

between 3km and 25km; Orthogonal (0.0748) (0.0712) (0.0808)

Tons of pesticide (i) 0.1262∗∗∗ 0.2586∗∗∗ 0.2113∗∗∗

between 3km and 25km; Downwind (0.0467) (0.0611) (0.0665)

Monitor FE T T T
Day-of-sample FE T F F
Week-of-sample FE F T F
Month-of-sample FE F F T
N 26,242 26,242 26,242

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1) EPA
sensor and (2) day of sample. FE refers to fixed effect. Windsorization replaces any value above the
97.5th percentile of a variable with the 97.5th percentile. Windsorization attempts to limit the
influence of extreme values within the independent variables(s). Upwind refers to the degree to
which pesticide applications occured upwind of the EPA monitor—0 and 60 degrees (in absolute
value). Similarly, I label angles between 60 and 120 degrees as Orthogonal and angles between 120
and 180 degrees as Downwind. See the Empirical Strategy section for a detailed explanation. I
two-way cluster the errors by (1) monitor and (2) day of sample. Significance levels: *10%, **5%,
***1%. The letters in parentheses (e.g., ‘(a)’) reference labeled areas in the figures associated with
these results.
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Table C.6: Increases in max. PM2.5 from aerial pesticides: Wind-variation
results, Windsorized

Dependent variable: Maximum daily PM2.5 level

(1) (2)

Tons of pesticide (a) 0.3085∗∗ 0.3422∗∗

within 1.5km; Upwind (0.1301) (0.1343)

Tons of pesticide (b) −0.4266∗∗∗ −0.3842∗∗∗

within 1.5km; Orthogonal (0.1188) (0.1312)

Tons of pesticide (c) 0.1274 0.1756
within 1.5km; Downwind (0.1493) (0.1828)

Tons of pesticide (d) 0.2430∗ 0.2657∗

between 1.5km and 3km; Upwind (0.1372) (0.1584)

Tons of pesticide (e) 0.2582 0.2714
between 1.5km and 3km; Orthogonal (0.2262) (0.2353)

Tons of pesticide (f) −0.3153 −0.2958
between 1.5km and 3km; Downwind (0.3397) (0.3098)

Tons of pesticide (g) −0.1947 −0.2469
between 3km and 25km; Upwind (0.1530) (0.1559)

Tons of pesticide (g) 0.1032 0.0822
between 3km and 25km; Orthogonal (0.0853) (0.0852)

Tons of pesticide (i) 0.1744∗∗ 0.1500∗

between 3km and 25km; Downwind (0.0883) (0.0798)

Monitor FE T T
Week-of-year FE T F
Month-of-year FE F T
Day-of-week FE T T
Year FE T T
N 26,242 26,242

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1) EPA
sensor and (2) day of sample. FE refers to fixed effect. Windsorization replaces any value above the
97.5th percentile of a variable with the 97.5th percentile. Windsorization attempts to limit the
influence of extreme values within the independent variables(s). Upwind refers to the degree to
which pesticide applications occured upwind of the EPA monitor—0 and 60 degrees (in absolute
value). Similarly, I label angles between 60 and 120 degrees as Orthogonal and angles between 120
and 180 degrees as Downwind. See the Empirical Strategy section for a detailed explanation. I
two-way cluster the errors by (1) monitor and (2) day of sample. Significance levels: *10%, **5%,
***1%. The letters in parentheses (e.g., ‘(a)’) reference labeled areas in the figures associated with
these results.

146



www.manaraa.com

C.3 Data appendix

EPA monitoring data

I downloaded the EPA PM2.5 monitoring data from the EPA’s I use daily data from
both FRM/FEM mass systems and non-FRM/FEM mass systems.1

PUR data

I only use PUR data related to agricultural production (record_id of 2 or C) and for
pesticides that were applied aerially (type = A). Because both empirical strategies
rely on geography and timing, I drop use reports missing dates or coordinates (i.e.,
no NAs).

With regards to the California DPR’s map of sections, I drop 42 sections (ap-
proximately 0.03% of sections) that map to multiple polygons—again because both
empirical strategies rely on confidently locating pesticide applications in space.
The dropped sections account for approximately 0.2% of the pounds of pesticide
reported in the PUR system.

Tables C.1 and C.2 use Windsorized values of the PUR data. Specifically, I Wind-
sorize the variable that represents the total pounds of pesticide applied, replacing
any value that exceeds the 97.5th percentile with the 97.5th percentile.

Wind data

The NLDAS-2 data come from the Goddard Earth Sciences Data and Information
Services Center (GES DISC). While the NLDAS-2 generates hourly data, the paper
uses wind estimated at noon at 10 meters above the ground.2 I calculate wind speed
and direction using the U and V wind vectors and trigonometry:

WindSpeed =
√

u2 + v2 (C.1)

WindAngle = tan−1
(u
v

)
×

180
π

(C.2)

In addition, geographic resolution is not the only source of noise in the wind-
based measurements. While the NLDAS-2 provides NASA’s best attempts to recreate
historical wind outcomes at a high spatiotemporal level, the the NLDAS-2 wind data
likely introduce additional noise and, consequently, attenuation.

1FRM is the acronym for Federal Reference Method; FEM abbreviates Federal Equivalent Methods.
2The time-of-day data in the PURs do not appear to meet data-quality standards.
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